
PyPDF2

Mathieu Fenniak

Apr 01, 2024

USER GUIDE

1 Installation 3

2 Migration Guide: 1.x to 2.x 5

3 Imports and Modules 7

4 Naming Adjustments 9

5 Robustness and strict=False 15

6 Exceptions, Warnings, and Log messages 17

7 Metadata 19

8 Extract Text from a PDF 21

9 Extract Images 25

10 Encryption and Decryption of PDFs 27

11 Merging PDF files 29

12 Cropping and Transforming PDFs 33

13 Adding a Stamp/Watermark to a PDF 47

14 Reading PDF Annotations 51

15 Adding PDF Annotations 53

16 Interactions with PDF Forms 59

17 Streaming Data with PyPDF2 61

18 Reduce PDF Size 63

19 PDF Version Support 65

20 The PdfReader Class 67

21 The PdfWriter Class 73

22 The PdfMerger Class 85

i

23 The PageObject Class 89

24 The Transformation Class 97

25 The DocumentInformation Class 99

26 The XmpInformation Class 101

27 The Destination Class 105

28 The RectangleObject Class 107

29 The Field Class 109

30 The PageRange Class 111

31 The AnnotationBuilder Class 113

32 The Fit Class 115

33 The PaperSize Class 117

34 Developer Intro 119

35 The PDF Format 121

36 CMaps 125

37 The Deprecation Process 127

38 Testing 129

39 CHANGELOG 131

40 Changelog of PyPDF2 1.X 157

41 Project Governance 181

42 History of PyPDF2 185

43 Contributors 187

44 PyPDF2 vs X 189

45 Frequently-Asked Questions 191

46 Indices and tables 193

Index 195

ii

PyPDF2

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

PyPDF2 is a free and open source pure-python PDF library capable of splitting, merging, cropping, and transforming
the pages of PDF files. It can also add custom data, viewing options, and passwords to PDF files. PyPDF2 can retrieve
text and metadata from PDFs as well.

You can contribute to PyPDF2 on GitHub.

USER GUIDE 1

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://en.wikipedia.org/wiki/Free_software
https://github.com/py-pdf/PyPDF2

PyPDF2

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

There are several ways to install PyPDF2. The most common option is to use pip.

1.1 pip

PyPDF2 requires Python 3.6+ to run.

Typically Python comes with pip, a package installer. Using it you can install PyPDF2:

pip install PyPDF2

If you are not a super-user (a system administrator / root), you can also just install PyPDF2 for your current user:

pip install --user PyPDF2

1.1.1 Optional dependencies

PyPDF2 tries to be as self-contained as possible, but for some tasks the amount of work to properly maintain the code
would be too high. This is especially the case for cryptography and image formats.

If you simply want to install all optional dependencies, run:

pip install PyPDF2[full]

Alternatively, you can install just some:

If you plan to use PyPDF2 for encrypting or decrypting PDFs that use AES, you will need to install some extra depen-
dencies. Encryption using RC4 is supported using the regular installation.

pip install PyPDF2[crypto]

If you plan to use image extraction, you need Pillow:

pip install PyPDF2[image]

3

PyPDF2

1.2 Python Version Support

Python 3.10 3.9 3.8 3.7 3.6 2.7
PyPDF2>=2.0 YES YES YES YES YES

PyPDF2 1.20.0 - 1.28.4 YES YES YES YES YES YES
PyPDF2 1.15.0 - 1.20.0 YES

1.3 Anaconda

Anaconda users can install PyPDF2 via conda-forge.

1.4 Development Version

In case you want to use the current version under development:

pip install git+https://github.com/py-pdf/PyPDF2.git

4 Chapter 1. Installation

https://anaconda.org/conda-forge/pypdf2

CHAPTER

TWO

MIGRATION GUIDE: 1.X TO 2.X

PyPDF2<2.0.0 (docs) is very different from PyPDF2>=2.0.0 (docs).

Luckily, most changes are simple naming adjustments. This guide helps you to make the step from PyPDF2 1.x (or
even the original PyPpdf) to PyPDF2>=2.0.0.

You can execute your code with the updated version and show deprecation warnings by running python -W all
your_code.py.

5

https://pypdf2.readthedocs.io/en/1.27.12/meta/history.html
../meta/history.md

PyPDF2

6 Chapter 2. Migration Guide: 1.x to 2.x

CHAPTER

THREE

IMPORTS AND MODULES

• PyPDF2.utils no longer exists

• PyPDF2.pdf no longer exists. You can import from PyPDF2 directly or from PyPDF2.generic

7

PyPDF2

8 Chapter 3. Imports and Modules

CHAPTER

FOUR

NAMING ADJUSTMENTS

4.1 Classes

The base classes were renamed as they also allow to operate with ByteIO streams instead of files. Also, the strict
paramter changed the default value from strict=True to strict=False.

• PdfFileReader PdfReader

• PdfFileWriter PdfWriter

• PdfFileMerger PdfMerger

PdfFileReader and PdfFileMerger no longer have the overwriteWarnings parameter. The new behavior is
overwriteWarnings=False.

4.2 Function, Method, and Property Names

In PyPDF2.xmp.XmpInformation:

• rdfRoot rdf_root

• xmp_createDate xmp_create_date

• xmp_creatorTool xmp_creator_tool

• xmp_metadataDate xmp_metadata_date

• xmp_modifyDate xmp_modify_date

• xmpMetadata xmp_metadata

• xmpmm_documentId xmpmm_document_id

• xmpmm_instanceId xmpmm_instance_id

In PyPDF2.generic:

• readObject read_object

• convertToInt convert_to_int

• DocumentInformation.getText DocumentInformation._get_text : This method should typically not
be used; please let me know if you need it.

• readHexStringFromStream read_hex_string_from_stream

• initializeFromDictionary initialize_from_dictionary

• createStringObject create_string_object

9

PyPDF2

• TreeObject.hasChildren TreeObject.has_children

• TreeObject.emptyTree TreeObject.empty_tree

In many places:

• getObject get_object

• writeToStream write_to_stream

• readFromStream read_from_stream

PdfReader class:

• reader.getPage(pageNumber) reader.pages[page_number]

• reader.getNumPages() / reader.numPages len(reader.pages)

• getDocumentInfo metadata

• flattenedPages attribute flattened_pages

• resolvedObjects attribute resolved_objects

• xrefIndex attribute xref_index

• getNamedDestinations / namedDestinations attribute named_destinations

• getPageLayout / pageLayout page_layout attribute

• getPageMode / pageMode page_mode attribute

• getIsEncrypted / isEncrypted is_encrypted attribute

• getOutlines get_outlines

• readObjectHeader read_object_header

• cacheGetIndirectObject cache_get_indirect_object

• cacheIndirectObject cache_indirect_object

• getDestinationPageNumber get_destination_page_number

• readNextEndLine read_next_end_line

• _zeroXref _zero_xref

• _authenticateUserPassword _authenticate_user_password

• _pageId2Num attribute _page_id2num

• _buildDestination _build_destination

• _buildOutline _build_outline

• _getPageNumberByIndirect(indirectRef) _get_page_number_by_indirect(indirect_ref)

• _getObjectFromStream _get_object_from_stream

• _decryptObject _decrypt_object

• _flatten(..., indirectRef) _flatten(..., indirect_ref)

• _buildField _build_field

• _checkKids _check_kids

• _writeField _write_field

• _write_field(..., fieldAttributes) _write_field(..., field_attributes)

10 Chapter 4. Naming Adjustments

PyPDF2

• _read_xref_subsections(..., getEntry, ...) _read_xref_subsections(..., get_entry, ...
)

PdfWriter class:

• writer.getPage(pageNumber) writer.pages[page_number]

• writer.getNumPages() len(writer.pages)

• addMetadata add_metadata

• addPage add_page

• addBlankPage add_blank_page

• addAttachment(fname, fdata) add_attachment(filename, data)

• insertPage insert_page

• insertBlankPage insert_blank_page

• appendPagesFromReader append_pages_from_reader

• updatePageFormFieldValues update_page_form_field_values

• cloneReaderDocumentRoot clone_reader_document_root

• cloneDocumentFromReader clone_document_from_reader

• getReference get_reference

• getOutlineRoot get_outline_root

• getNamedDestRoot get_named_dest_root

• addBookmarkDestination add_bookmark_destination

• addBookmarkDict add_bookmark_dict

• addBookmark add_bookmark

• addNamedDestinationObject add_named_destination_object

• addNamedDestination add_named_destination

• removeLinks remove_links

• removeImages(ignoreByteStringObject) remove_images(ignore_byte_string_object)

• removeText(ignoreByteStringObject) remove_text(ignore_byte_string_object)

• addURI add_uri

• addLink add_link

• getPage(pageNumber) get_page(page_number)

• getPageLayout / setPageLayout / pageLayout page_layout attribute

• getPageMode / setPageMode / pageMode page_mode attribute

• _addObject _add_object

• _addPage _add_page

• _sweepIndirectReferences _sweep_indirect_references

PdfMerger class

• __init__ parameter: strict=True strict=False (the PdfFileMerger still has the old default)

4.2. Function, Method, and Property Names 11

PyPDF2

• addMetadata add_metadata

• addNamedDestination add_named_destination

• setPageLayout set_page_layout

• setPageMode set_page_mode

Page class:

• artBox / bleedBox / cropBox / mediaBox / trimBox artbox / bleedbox / cropbox / mediabox / trimbox

– getWidth, getHeight width / height

– getLowerLeft_x / getUpperLeft_x left

– getUpperRight_x / getLowerRight_x right

– getLowerLeft_y / getLowerRight_y bottom

– getUpperRight_y / getUpperLeft_y top

– getLowerLeft / setLowerLeft lower_left property

– upperRight upper_right

• mergePage merge_page

• rotateClockwise / rotateCounterClockwise rotate_clockwise

• _mergeResources _merge_resources

• _contentStreamRename _content_stream_rename

• _pushPopGS _push_pop_gs

• _addTransformationMatrix _add_transformation_matrix

• _mergePage _merge_page

XmpInformation class:

• getElement(..., aboutUri, ...) get_element(..., about_uri, ...)

• getNodesInNamespace(..., aboutUri, ...) get_nodes_in_namespace(..., aboutUri, ...)

• _getText _get_text

utils.py:

• matrixMultiply `matrix_multiply

• RC4_encrypt is moved to the security module

4.3 Parameter Names

• PdfWriter.get_page: pageNumber page_number

• PyPDF2.filters (all classes): decodeParms decode_parms

• PyPDF2.filters (all classes): decodeStreamData decode_stream_data

• pagenum page_number

• PdfMerger.merge: position page_number

• PdfWriter.add_outline_item_destination: dest page_destination

12 Chapter 4. Naming Adjustments

PyPDF2

• PdfWriter.add_named_destination_object: dest page_destination

• PdfWriter.encrypt: user_pwd user_password

• PdfWriter.encrypt: owner_pwd owner_password

4.4 Deprecations

A few classes / functions were deprecated without replacement:

• PyPDF2.utils.ConvertFunctionsToVirtualList

• PyPDF2.utils.formatWarning

• PyPDF2.isInt(obj): Use instance(obj, int) instead

• PyPDF2.u_(s): Use s directly

• PyPDF2.chr_(c): Use chr(c) instead

• PyPDF2.barray(b): Use bytearray(b) instead

• PyPDF2.isBytes(b): Use instance(b, type(bytes())) instead

• PyPDF2.xrange_fn: Use range instead

• PyPDF2.string_type: Use str instead

• PyPDF2.isString(s): Use instance(s, str) instead

• PyPDF2._basestring: Use str instead

• b_(...) was removed. You should typically be able use the bytes object directly, otherwise you can copy this

4.4. Deprecations 13

https://github.com/py-pdf/PyPDF2/pull/986#issuecomment-1230698069

PyPDF2

14 Chapter 4. Naming Adjustments

CHAPTER

FIVE

ROBUSTNESS AND STRICT=FALSE

PDF is specified in various versions. The specification of PDF 1.7 has 978 pages. This length makes it hard to get
everything right. As a consequence, a lot of PDF files are not strictly following the specification.

If a PDF file does not follow the specification, it is not always possible to be certain what the intended effect would be.
Think of the following broken Python code as an example:

Broken
function (foo, bar):

Potentially intended:
def function(foo, bar):

...

Also possible:
function = (foo, bar)

Writing a parser you can go two paths: Either you try to be forgiving and try to figure out what the user intended, or
you are strict and just tell the user that they should fix their stuff.

PyPDF2 gives you the option to be strict or not.

PyPDF2 has three core objects and all of them have a strict parameter:

• PdfReader

• PdfWriter

• PdfMerger

Choosing strict=True means that PyPDF2 will raise an exception if a PDF does not follow the specification.

Choosing strict=False means that PyPDF2 will try to be forgiving and do something reasonable, but it will log a
warning message. It is a best-effort approach.

15

https://www.pdfa.org/resource/pdf-specification-index/
../modules/PdfReader.md
../modules/PdfWriter.md
../modules/PdfMerger.md

PyPDF2

16 Chapter 5. Robustness and strict=False

CHAPTER

SIX

EXCEPTIONS, WARNINGS, AND LOG MESSAGES

PyPDF2 makes use of 3 mechanisms to show that something went wrong:

• Log messages are informative messages that can be used for post-mortem analysis. Most of the time, users can
ignore them. They come in different levels, such as info / warning / error indicating the severity. Examples are
non-standard compliant PDF files which PyPDF2 can deal with.

• Warnings are avoidable issues, such as using deprecated classes / functions / parameters. Another example is
missing capabilities of PyPDF2. In those cases, PyPDF2 users should adjust their code. Warnings are issued by
the warnings module - those are different from the log-level “warning”.

• Exceptions are error-cases that PyPDF2 users should explicitly handle. In the strict=True mode, most log
messages with the warning level will become exceptions. This can be useful in applications where you can force
to user to fix the broken PDF.

6.1 Exceptions

Exeptions need to be catched if you want to handle them. For example, you could want to read the text from a PDF as
a part of a search function.

Most PDF files don’t follow the specifications. In this case PyPDF2 needs to guess which kinds of mistakes were
potentially done when the PDF file was created. See the robustness page for the related issues.

As a users, you likely don’t care about it. If it’s readable in any way, you want the text. You might use pdfminer.six as
a fallback and do this:

from PyPDF2 import PdfReader
from pdfminer.high_level import extract_text as fallback_text_extraction

text = ""
try:

reader = PdfReader("example.pdf")
for page in reader.pages:

text += page.extract_text()
except Exception as exc:

text = fallback_text_extraction("example.pdf")

You could also capture PyPDF2.errors.PyPdfError if you prefer something more specific.

17

robustness.md
https://github.com/py-pdf/PyPDF2/blob/main/PyPDF2/errors.py

PyPDF2

6.2 Warnings

The warnings module allows you to ignore warnings:

import warnings

warnings.filterwarnings("ignore")

In many cases, you actually want to start Python with the -W flag so that you see all warnings. This is especially true
for Continuous Integration (CI).

6.3 Log messages

Log messages can be noisy in some cases. PyPDF2 hopefully is having a reasonable level of log messages, but you can
reduce which types of messages you want to see:

import logging

logger = logging.getLogger("PyPDF2")
logger.setLevel(logging.ERROR)

The logging module defines six log levels:

• CRITICAL

• ERROR

• WARNING

• INFO

• DEBUG

• NOTSET

18 Chapter 6. Exceptions, Warnings, and Log messages

https://docs.python.org/3/library/warnings.html
https://docs.python.org/3/library/logging.html#logging-levels

CHAPTER

SEVEN

METADATA

7.1 Reading metadata

from PyPDF2 import PdfReader

reader = PdfReader("example.pdf")

meta = reader.metadata

print(len(reader.pages))

All of the following could be None!
print(meta.author)
print(meta.creator)
print(meta.producer)
print(meta.subject)
print(meta.title)

7.2 Writing metadata

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("example.pdf")
writer = PdfWriter()

Add all pages to the writer
for page in reader.pages:

writer.add_page(page)

Add the metadata
writer.add_metadata(

{
"/Author": "Martin",
"/Producer": "Libre Writer",

}
)

Save the new PDF to a file
(continues on next page)

19

PyPDF2

(continued from previous page)

with open("meta-pdf.pdf", "wb") as f:
writer.write(f)

20 Chapter 7. Metadata

CHAPTER

EIGHT

EXTRACT TEXT FROM A PDF

You can extract text from a PDF like this:

from PyPDF2 import PdfReader

reader = PdfReader("example.pdf")
page = reader.pages[0]
print(page.extract_text())

you can also choose to limit the text orientation you want to extract, e.g:

extract only text oriented up
print(page.extract_text(0))

extract text oriented up and turned left
print(page.extract_text((0, 90)))

Refer to extract_text for more details.

8.1 Using a visitor

You can use visitor-functions to control which part of a page you want to process and extract. The visitor-functions you
provide will get called for each operator or for each text fragment.

The function provided in argument visitor_text of function extract_text has five arguments: current transformation
matrix, text matrix, font-dictionary and font-size. In most cases the x and y coordinates of the current position are in
index 4 and 5 of the current transformation matrix.

The font-dictionary may be None in case of unknown fonts. If not None it may e.g. contain key “/BaseFont” with value
“/Arial,Bold”.

Caveat: In complicated documents the calculated positions might be wrong.

The function provided in argument visitor_operand_before has four arguments: operand, operand-arguments, current
transformation matrix and text matrix.

21

../modules/PageObject.html#PyPDF2._page.PageObject.extract_text

PyPDF2

8.1.1 Example 1: Ignore header and footer

The following example reads the text of page 4 of this PDF document, but ignores header (y < 720) and footer (y > 50).

from PyPDF2 import PdfReader

reader = PdfReader("GeoBase_NHNC1_Data_Model_UML_EN.pdf")
page = reader.pages[3]

parts = []

def visitor_body(text, cm, tm, fontDict, fontSize):
y = tm[5]
if y > 50 and y < 720:

parts.append(text)

page.extract_text(visitor_text=visitor_body)
text_body = "".join(parts)

print(text_body)

8.1.2 Example 2: Extract rectangles and texts into a SVG-file

The following example converts page 3 of this PDF document into a SVG file.

Such a SVG export may help to understand whats going on in a page.

from PyPDF2 import PdfReader
import svgwrite

reader = PdfReader("GeoBase_NHNC1_Data_Model_UML_EN.pdf")
page = reader.pages[2]

dwg = svgwrite.Drawing("GeoBase_test.svg", profile="tiny")

def visitor_svg_rect(op, args, cm, tm):
if op == b"re":

(x, y, w, h) = (args[i].as_numeric() for i in range(4))
dwg.add(dwg.rect((x, y), (w, h), stroke="red", fill_opacity=0.05))

def visitor_svg_text(text, cm, tm, fontDict, fontSize):
(x, y) = (tm[4], tm[5])
dwg.add(dwg.text(text, insert=(x, y), fill="blue"))

page.extract_text(
visitor_operand_before=visitor_svg_rect, visitor_text=visitor_svg_text

)
dwg.save()

22 Chapter 8. Extract Text from a PDF

https://github.com/py-pdf/PyPDF2/blob/main/resources/GeoBase_NHNC1_Data_Model_UML_EN.pdf
https://github.com/py-pdf/PyPDF2/blob/main/resources/GeoBase_NHNC1_Data_Model_UML_EN.pdf
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

PyPDF2

The SVG generated here is bottom-up because the coordinate systems of PDF and SVG differ.

Unfortunately in complicated PDF documents the coordinates given to the visitor-functions may be wrong.

8.2 Why Text Extraction is hard

Extracting text from a PDF can be pretty tricky. In several cases there is no clear answer what the expected result should
look like:

1. Paragraphs: Should the text of a paragraph have line breaks at the same places where the original PDF had
them or should it rather be one block of text?

2. Page numbers: Should they be included in the extract?

3. Headers and Footers: Similar to page numbers - should they be extracted?

4. Outlines: Should outlines be extracted at all?

5. Formatting: If text is bold or italic, should it be included in the output?

6. Tables: Should the text extraction skip tables? Should it extract just the text? Should the borders be shown in
some Markdown-like way or should the structure be present e.g. as an HTML table? How would you deal with
merged cells?

7. Captions: Should image and table captions be included?

8. Ligatures: The Unicode symbol U+FB00 is a single symbol ff for two lowercase letters ‘f’. Should that be parsed
as the Unicode symbol ‘ff’ or as two ASCII symbols ‘ff’?

9. SVG images: Should the text parts be extracted?

10. Mathematical Formulas: Should they be extracted? Formulas have indices, and nested fractions.

11. Whitespace characters: How many new lines should be extracted for 3cm of vertical whitespace? How many
spaces should be extracted if there is 3cm of horizontal whitespace? When would you extract tabs and when
spaces?

12. Footnotes: When the text of multiple pages is extracted, where should footnotes be shown?

13. Hyperlinks and Metadata: Should it be extracted at all? Where should it be placed in which format?

14. Linearization: Assume you have a floating figure in between a paragraph. Do you first finish the paragraph or
do you put the figure text in between?

Then there are issues where most people would agree on the correct output, but the way PDF stores information just
makes it hard to achieve that:

1. Tables: Typically, tables are just absolutely positioned text. In the worst case, ever single letter could be abso-
lutely positioned. That makes it hard to tell where columns / rows are.

2. Images: Sometimes PDFs do not contain the text as it’s displayed, but instead an image. You notice that when
you cannot copy the text. Then there are PDF files that contain an image and a text layer in the background. That
typically happens when a document was scanned. Although the scanning software (OCR) is pretty good today,
it still fails once in a while. PyPDF2 is no OCR software; it will not be able to detect those failures. PyPDF2
will also never be able to extract text from images.

And finally there are issues that PyPDF2 will deal with. If you find such a text extraction bug, please share the PDF
with us so we can work on it!

8.2. Why Text Extraction is hard 23

https://www.compart.com/de/unicode/U+FB00

PyPDF2

8.3 OCR vs Text Extraction

Optical Character Recognition (OCR) is the process of extracting text from images. Software which does this is called
OCR software. The tesseract OCR engine is the most commonly known Open Source OCR software.

PyPDF2 is not OCR software.

8.3.1 Digitally-born vs Scanned PDF files

PDF documents can contain images and text. PDF files don’t store text in a semantically meaningful way, but in a way
that makes it easy to show the text on screen or print it. For this reason text extraction from PDFs is hard.

If you scan a document, the resulting PDF typically shows the image of the scan. Scanners then also run OCR software
and put the recognized text in the background of the image. This result of the scanners OCR software can be extracted
by PyPDF2. However, in such cases it’s recommended to directly use OCR software as errors can accumulate: The
OCR software is not perfect in recognizing the text. Then it stores the text in a format that is not meant for text extraction
and PyPDF2 might make mistakes parsing that.

Hence I would distinguish three types of PDF documents:

• Digitally-born PDF files: The file was created digitally on the computer. It can contain images, texts, links,
outline items (a.k.a., bookmarks), JavaScript, . . . If you Zoom in a lot, the text still looks sharp.

• Scanned PDF files: Any number of pages was scanned. The images were then stored in a PDF file. Hence the
file is just a container for those images. You cannot copy the text, you don’t have links, outline items, JavaScript.

• OCRed PDF files: The scanner ran OCR software and put the recognized text in the background of the image.
Hence you can copy the text, but it still looks like a scan. If you zoom in enough, you can recognize pixels.

8.3.2 Can we just always use OCR?

You might now wonder if it makes sense to just always use OCR software. If the PDF file is digitally-born, you can
just render it to an image.

I would recommend not to do that.

Text extraction software like PyPDF2 can use more information from the PDF than just the image. It can know about
fonts, encodings, typical character distances and similar topics.

That means PyPDF2 has a clear advantage when it comes to characters which are easy to confuse such as oO0ö.
PyPDF2 will never confuse characters. It just reads what is in the file.

PyPDF2 also has an edge when it comes to characters which are rare, e.g. . OCR software will not be able to recognize
smileys correctly.

8.4 Attempts to prevent text extraction

If people who share PDF documents want to prevent text extraction, there are multiple ways to do so:

1. Store the contents of the PDF as an image

2. Use a scrambled font

However, text extraction cannot be completely prevented if people should still be able to read the document. In the
worst case people can make a screenshot, print it, scan it, and run OCR over it.

24 Chapter 8. Extract Text from a PDF

https://github.com/tesseract-ocr/tesseract
https://stackoverflow.com/a/43466923/562769

CHAPTER

NINE

EXTRACT IMAGES

Please note: In order to use the following code you need to install optional dependencies, see installation
guide.

Every page of a PDF document can contain an arbitrary amount of images. The names of the files may not be unique.

from PyPDF2 import PdfReader

reader = PdfReader("example.pdf")

page = reader.pages[0]
count = 0

for image_file_object in page.images:
with open(str(count) + image_file_object.name, "wb") as fp:

fp.write(image_file_object.data)
count += 1

25

installation.md
installation.md

PyPDF2

26 Chapter 9. Extract Images

CHAPTER

TEN

ENCRYPTION AND DECRYPTION OF PDFS

Please see the note in the installation guide for installing the extra dependencies if interacting with PDFs
that use AES.

10.1 Encrypt

Add a password to a PDF (encrypt it):

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("example.pdf")
writer = PdfWriter()

Add all pages to the writer
for page in reader.pages:

writer.add_page(page)

Add a password to the new PDF
writer.encrypt("my-secret-password")

Save the new PDF to a file
with open("encrypted-pdf.pdf", "wb") as f:

writer.write(f)

10.2 Decrypt

Remove the password from a PDF (decrypt it):

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("encrypted-pdf.pdf")
writer = PdfWriter()

if reader.is_encrypted:
reader.decrypt("my-secret-password")

Add all pages to the writer
for page in reader.pages:

(continues on next page)

27

installation.md

PyPDF2

(continued from previous page)

writer.add_page(page)

Save the new PDF to a file
with open("decrypted-pdf.pdf", "wb") as f:

writer.write(f)

28 Chapter 10. Encryption and Decryption of PDFs

CHAPTER

ELEVEN

MERGING PDF FILES

11.1 Basic Example

from PyPDF2 import PdfWriter

merger = PdfWriter()

for pdf in ["file1.pdf", "file2.pdf", "file3.pdf"]:
merger.append(pdf)

merger.write("merged-pdf.pdf")
merger.close()

For more details, see an excellent answer on StackOverflow by Paul Rooney.

11.2 Showing more merging options

from PyPDF2 import PdfWriter

merger = PdfWriter()

input1 = open("document1.pdf", "rb")
input2 = open("document2.pdf", "rb")
input3 = open("document3.pdf", "rb")

add the first 3 pages of input1 document to output
merger.append(fileobj=input1, pages=(0, 3))

insert the first page of input2 into the output beginning after the second page
merger.merge(position=2, fileobj=input2, pages=(0, 1))

append entire input3 document to the end of the output document
merger.append(input3)

Write to an output PDF document
output = open("document-output.pdf", "wb")
merger.write(output)

(continues on next page)

29

https://stackoverflow.com/questions/3444645/merge-pdf-files

PyPDF2

(continued from previous page)

Close File Descriptors
merger.close()
output.close()

11.3 append

append has been slighlty extended in PdfWriter.

see pdfWriter.append for more details

parameters:

fileobj: PdfReader or filename to merge outline_item: string of a outline/bookmark pointing to the beginning of the
inserted file. if None, or omitted, no bookmark will be added. pages: pages to merge ; you can also provide a list of
pages to merge None(default) means that the full document will be merged. import_outline: import/ignore the pertinent
outlines from the source (default True) excluded_fields: list of keys to be ignored for the imported objects; if “/Annots”
is part of the list, the annotation will be ignored if “/B” is part of the list, the articles will be ignored

examples:

writer.append("source.pdf",(0,10)) # append the first 10 pages of source.pdf

writer.append(reader,"page 1 and 10",[0,9]) #append first and 10th page from reader and
create an outline)

During the merging, the relevant named destination will also imported.

If you want to insert pages in the middle of the destination, use merge (which provides (insert) position)

You can now insert the same page multiple times. You can also insert the same page many time at once with a list:

eg: writer.append(reader,[0,1,0,2,0]) will insert the pages (1), (2), with page (0) before, in the middle and
after

11.4 add_page / insert_page

It is recommended to use append or merge instead

11.5 reset_translation

During the cloning, if an object has been already cloned, it will not be cloned again, a pointer this previously cloned
object is returned. because of that, if you add/merge a page that has been already added, the same object will be added
the second time. If later you modify any of these two page, both pages can be modified independantly.

To reset, call writer.reset_translation(reader)

30 Chapter 11. Merging PDF files

../modules/PdfWriter.html#PyPDF2.PdfWriter.append

PyPDF2

11.6 Advanced cloning

In order to prevent side effect between pages/objects objects and all objects linked are linked during merging.

This process will be automatically applied if you use PdfWriter.append/merge/add_page/insert_page. If you want to
clone an object before attaching it “manually”, use clone function of any PdfObject: eg:

cloned_object = object.clone(writer)

if you try clone an object already belonging to writer, it will return the same object

cloned_object == object.clone(writer) # -> returns True

the same, if you try to clone twice an object it will return the previously cloned object

object.clone(writer) == object.clone(writer) # -> returns True

Also, note that if you clone an object, you will clone all the objects below including the objects pointed by Indirec-
tObject. because of that if you clone a page that includes some articles (“/B”), not only the first article, but also all
the chained articles, and the pages where those articles can be read will be copied. It means that you may copy lots of
objects, that will be saved in the output pdf.

In order to prevent, that you can provide the list of defined the fields in the dictionaries to be ignored:

eg: new_page = writer.add_page(reader.pages[0],excluded_fields=["/B"])

11.6. Advanced cloning 31

PyPDF2

32 Chapter 11. Merging PDF files

CHAPTER

TWELVE

CROPPING AND TRANSFORMING PDFS

from PyPDF2 import PdfWriter, PdfReader

reader = PdfReader("example.pdf")
writer = PdfWriter()

add page 1 from reader to output document, unchanged:
writer.add_page(reader.pages[0])

add page 2 from reader, but rotated clockwise 90 degrees:
writer.add_page(reader.pages[1].rotate(90))

add page 3 from reader, but crop it to half size:
page3 = reader.pages[2]
page3.mediabox.upper_right = (

page3.mediabox.right / 2,
page3.mediabox.top / 2,

)
writer.add_page(page3)

add some Javascript to launch the print window on opening this PDF.
the password dialog may prevent the print dialog from being shown,
comment the the encription lines, if that's the case, to try this out:
writer.add_js("this.print({bUI:true,bSilent:false,bShrinkToFit:true});")

write to document-output.pdf
with open("PyPDF2-output.pdf", "wb") as fp:

writer.write(fp)

12.1 Page rotation

The most typical rotation is a clockwise rotation of the page by multiples of 90 degrees. That is done when the orien-
tation of the page is wrong. You can do that with the rotate method of the PageObject class:

from PyPDF2 import PdfWriter, PdfReader

reader = PdfReader("input.pdf")
writer = PdfWriter()

(continues on next page)

33

https://pypdf2.readthedocs.io/en/latest/modules/PageObject.html#PyPDF2._page.PageObject.rotate

PyPDF2

(continued from previous page)

writer.add_page(reader.pages[0])
writer.pages[0].rotate(90)

with open("output.pdf", "wb") as fp:
writer.write(fp)

The rotate method is typically preferred over the page.add_transformation(Transformation().rotate())
method, because rotatewill ensure that the page is still in the mediabox / cropbox. The transformation object operates
on the coordinates of the pages contents and does not change the mediabox or cropbox.

34 Chapter 12. Cropping and Transforming PDFs

PyPDF2

12.1. Page rotation 35

PyPDF2

12.2 Plain Merge

36 Chapter 12. Cropping and Transforming PDFs

PyPDF2

is the result of

from PyPDF2 import PdfReader, PdfWriter, Transformation

Get the data
reader_base = PdfReader("labeled-edges-center-image.pdf")
page_base = reader_base.pages[0]

reader = PdfReader("box.pdf")
page_box = reader.pages[0]

page_base.merge_page(page_box)

Write the result back
writer = PdfWriter()
writer.add_page(page_base)
with open("merged-foo.pdf", "wb") as fp:

writer.write(fp)

12.2. Plain Merge 37

PyPDF2

38 Chapter 12. Cropping and Transforming PDFs

PyPDF2

12.3 Merge with Rotation

12.3. Merge with Rotation 39

PyPDF2

from PyPDF2 import PdfReader, PdfWriter, Transformation

Get the data
reader_base = PdfReader("labeled-edges-center-image.pdf")
page_base = reader_base.pages[0]

reader = PdfReader("box.pdf")
page_box = reader.pages[0]

Apply the transformation
transformation = Transformation().rotate(45)
page_box.add_transformation(transformation)
page_base.merge_page(page_box)

Write the result back
writer = PdfWriter()
writer.add_page(page_base)
with open("merged-foo.pdf", "wb") as fp:

writer.write(fp)

If you add the expand parameter:

transformation = Transformation().rotate(45)
page_box.add_transformation(transformation)
page_base.merge_page(page_box)

you get:

40 Chapter 12. Cropping and Transforming PDFs

PyPDF2

Alternatively, you can move the merged image a bit to the right by using

12.3. Merge with Rotation 41

PyPDF2

op = Transformation().rotate(45).translate(tx=50)

42 Chapter 12. Cropping and Transforming PDFs

PyPDF2

12.3. Merge with Rotation 43

PyPDF2

12.4 Scaling

PyPDF2 offers two ways to scale: The page itself and the contents on a page. Typically, you want to combine both.

12.4.1 Scaling a Page (the Canvas)

from PyPDF2 import PdfReader, PdfWriter

Read the input
reader = PdfReader("resources/side-by-side-subfig.pdf")
page = reader.pages[0]

Scale
page.scale_by(0.5)

Write the result to a file
writer = PdfWriter()
writer.add_page(page)
writer.write("out.pdf")

If you wish to have more control, you can adjust the various page boxes directly:

from PyPDF2.generic import RectangleObject

mb = page.mediabox

page.mediabox = RectangleObject((mb.left, mb.bottom, mb.right, mb.top))
page.cropbox = RectangleObject((mb.left, mb.bottom, mb.right, mb.top))
page.trimbox = RectangleObject((mb.left, mb.bottom, mb.right, mb.top))
page.bleedbox = RectangleObject((mb.left, mb.bottom, mb.right, mb.top))
page.artbox = RectangleObject((mb.left, mb.bottom, mb.right, mb.top))

44 Chapter 12. Cropping and Transforming PDFs

PyPDF2

12.4.2 Scaling the content

The content is scaled towords the origin of the coordinate system. Typically, that is the lower-left corner.

from PyPDF2 import PdfReader, PdfWriter, Transformation

Read the input
reader = PdfReader("resources/side-by-side-subfig.pdf")
page = reader.pages[0]

Scale
op = Transformation().scale(sx=0.7, sy=0.7)
page.add_transformation(op)

Write the result to a file
writer = PdfWriter()
writer.add_page(page)
writer.write("out-pg-transform.pdf")

12.4. Scaling 45

PyPDF2

46 Chapter 12. Cropping and Transforming PDFs

CHAPTER

THIRTEEN

ADDING A STAMP/WATERMARK TO A PDF

Adding stamps or watermarks are two common ways to manipulate PDF files. A stamp is adding something on top of
the document, a watermark is in the background of the document.

In both cases you might want to ensure that the mediabox/cropbox of the original content stays the same.

13.1 Stamp (Overlay)

from pathlib import Path
from typing import Union, Literal, List

from PyPDF2 import PdfWriter, PdfReader

def stamp(
content_pdf: Path,
stamp_pdf: Path,
pdf_result: Path,
page_indices: Union[Literal["ALL"], List[int]] = "ALL",

):
reader = PdfReader(stamp_pdf)
image_page = reader.pages[0]

writer = PdfWriter()

reader = PdfReader(content_pdf)
if page_indices == "ALL":

page_indices = list(range(0, len(reader.pages)))
for index in page_indices:

content_page = reader.pages[index]
mediabox = content_page.mediabox
content_page.merge_page(image_page)
content_page.mediabox = mediabox
writer.add_page(content_page)

with open(pdf_result, "wb") as fp:
writer.write(fp)

47

PyPDF2

13.2 Watermark (Underlay)

from pathlib import Path
from typing import Union, Literal, List

from PyPDF2 import PdfWriter, PdfReader

def watermark(
content_pdf: Path,
stamp_pdf: Path,
pdf_result: Path,
page_indices: Union[Literal["ALL"], List[int]] = "ALL",

):
reader = PdfReader(content_pdf)

(continues on next page)

48 Chapter 13. Adding a Stamp/Watermark to a PDF

PyPDF2

(continued from previous page)

if page_indices == "ALL":
page_indices = list(range(0, len(reader.pages)))

writer = PdfWriter()
for index in page_indices:

content_page = reader.pages[index]
mediabox = content_page.mediabox

You need to load it again, as the last time it was overwritten
reader_stamp = PdfReader(stamp_pdf)
image_page = reader_stamp.pages[0]

image_page.merge_page(content_page)
image_page.mediabox = mediabox
writer.add_page(image_page)

with open(pdf_result, "wb") as fp:
writer.write(fp)

13.2. Watermark (Underlay) 49

PyPDF2

50 Chapter 13. Adding a Stamp/Watermark to a PDF

CHAPTER

FOURTEEN

READING PDF ANNOTATIONS

PDF 1.7 defines 25 different annotation types:

• Text

• Link

• FreeText

• Line, Square, Circle, Polygon, PolyLine, Highlight, Underline, Squiggly, StrikeOut

• Stamp, Caret, Ink

• Popup

• FileAttachment

• Sound, Movie

• Widget, Screen

• PrinterMark

• TrapNet

• Watermark

• 3D

In general, annotations can be read like this:

from PyPDF2 import PdfReader

reader = PdfReader("commented.pdf")

for page in reader.pages:
if "/Annots" in page:

for annot in page["/Annots"]:
obj = annot.get_object()
annotation = {"subtype": obj["/Subtype"], "location": obj["/Rect"]}
print(annotation)

Reading the most common ones is described here.

51

PyPDF2

14.1 Text

from PyPDF2 import PdfReader

reader = PdfReader("example.pdf")

for page in reader.pages:
if "/Annots" in page:

for annot in page["/Annots"]:
subtype = annot.get_object()["/Subtype"]
if subtype == "/Text":

print(annot.get_object()["/Contents"])

14.2 Highlights

from PyPDF2 import PdfReader

reader = PdfReader("commented.pdf")

for page in reader.pages:
if "/Annots" in page:

for annot in page["/Annots"]:
subtype = annot.get_object()["/Subtype"]
if subtype == "/Highlight":

coords = annot.get_object()["/QuadPoints"]
x1, y1, x2, y2, x3, y3, x4, y4 = coords

14.3 Attachments

from PyPDF2 import PdfReader

reader = PdfReader("example.pdf")

attachments = {}
for page in reader.pages:

if "/Annots" in page:
for annotation in page["/Annots"]:

subtype = annot.get_object()["/Subtype"]
if subtype == "/FileAttachment":

fileobj = annotobj["/FS"]
attachments[fileobj["/F"]] = fileobj["/EF"]["/F"].get_data()

52 Chapter 14. Reading PDF Annotations

CHAPTER

FIFTEEN

ADDING PDF ANNOTATIONS

15.1 Attachments

from PyPDF2 import PdfWriter

writer = PdfWriter()
writer.add_blank_page(width=200, height=200)

data = b"any bytes - typically read from a file"
writer.add_attachment("smile.png", data)

with open("output.pdf", "wb") as output_stream:
writer.write(output_stream)

15.2 Free Text

If you want to add text in a box like this

53

PyPDF2

you can use the AnnotationBuilder:

from PyPDF2 import PdfReader, PdfWriter
from PyPDF2.generic import AnnotationBuilder

Fill the writer with the pages you want
pdf_path = os.path.join(RESOURCE_ROOT, "crazyones.pdf")
reader = PdfReader(pdf_path)
page = reader.pages[0]
writer = PdfWriter()
writer.add_page(page)

Create the annotation and add it
annotation = AnnotationBuilder.free_text(

"Hello World\nThis is the second line!",
rect=(50, 550, 200, 650),
font="Arial",
bold=True,
italic=True,
font_size="20pt",
font_color="00ff00",

(continues on next page)

54 Chapter 15. Adding PDF Annotations

PyPDF2

(continued from previous page)

border_color="0000ff",
background_color="cdcdcd",

)
writer.add_annotation(page_number=0, annotation=annotation)

Write the annotated file to disk
with open("annotated-pdf.pdf", "wb") as fp:

writer.write(fp)

15.3 Text

A text annotation looks like this:

15.4 Line

If you want to add a line like this:

15.3. Text 55

PyPDF2

you can use the AnnotationBuilder:

pdf_path = os.path.join(RESOURCE_ROOT, "crazyones.pdf")
reader = PdfReader(pdf_path)
page = reader.pages[0]
writer = PdfWriter()
writer.add_page(page)

Add the line
annotation = AnnotationBuilder.line(

text="Hello World\nLine2",
rect=(50, 550, 200, 650),
p1=(50, 550),
p2=(200, 650),

)
writer.add_annotation(page_number=0, annotation=annotation)

Write the annotated file to disk
with open("annotated-pdf.pdf", "wb") as fp:

(continues on next page)

56 Chapter 15. Adding PDF Annotations

PyPDF2

(continued from previous page)

writer.write(fp)

15.5 Rectangle

If you want to add a rectangle like this:

you can use the AnnotationBuilder:

pdf_path = os.path.join(RESOURCE_ROOT, "crazyones.pdf")
reader = PdfReader(pdf_path)
page = reader.pages[0]
writer = PdfWriter()
writer.add_page(page)

Add the line
annotation = AnnotationBuilder.rectangle(

rect=(50, 550, 200, 650),
)
writer.add_annotation(page_number=0, annotation=annotation)

Write the annotated file to disk
with open("annotated-pdf.pdf", "wb") as fp:

writer.write(fp)

If you want the rectangle to be filled, use the interiour_color="ff0000" parameter.

This method uses the “square” annotation type of the PDF format.

15.5. Rectangle 57

PyPDF2

15.6 Link

If you want to add a link, you can use the AnnotationBuilder:

pdf_path = os.path.join(RESOURCE_ROOT, "crazyones.pdf")
reader = PdfReader(pdf_path)
page = reader.pages[0]
writer = PdfWriter()
writer.add_page(page)

Add the line
annotation = AnnotationBuilder.link(

rect=(50, 550, 200, 650),
url="https://martin-thoma.com/",

)
writer.add_annotation(page_number=0, annotation=annotation)

Write the annotated file to disk
with open("annotated-pdf.pdf", "wb") as fp:

writer.write(fp)

You can also add internal links:

pdf_path = os.path.join(RESOURCE_ROOT, "crazyones.pdf")
reader = PdfReader(pdf_path)
page = reader.pages[0]
writer = PdfWriter()
writer.add_page(page)

Add the line
annotation = AnnotationBuilder.link(

rect=(50, 550, 200, 650), target_page_index=3, fit="/FitH", fit_args=(123,)
)
writer.add_annotation(page_number=0, annotation=annotation)

Write the annotated file to disk
with open("annotated-pdf.pdf", "wb") as fp:

writer.write(fp)

58 Chapter 15. Adding PDF Annotations

CHAPTER

SIXTEEN

INTERACTIONS WITH PDF FORMS

16.1 Reading form fields

from PyPDF2 import PdfReader

reader = PdfReader("form.pdf")
fields = reader.get_form_text_fields()
fields == {"key": "value", "key2": "value2"}

16.2 Filling out forms

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("form.pdf")
writer = PdfWriter()

page = reader.pages[0]

writer.add_page(page)

writer.update_page_form_field_values(
writer.pages[0], {"fieldname": "some filled in text"}

)

write "output" to PyPDF2-output.pdf
with open("filled-out.pdf", "wb") as output_stream:

writer.write(output_stream)

59

PyPDF2

60 Chapter 16. Interactions with PDF Forms

CHAPTER

SEVENTEEN

STREAMING DATA WITH PYPDF2

In some cases you might want to avoid saving things explicitly as a file to disk, e.g. when you want to store the PDF in
a database or AWS S3.

PyPDF2 supports streaming data to a file-like object and here is how.

from io import BytesIO

Prepare example
with open("example.pdf", "rb") as fh:

bytes_stream = BytesIO(fh.read())

Read from bytes_stream
reader = PdfReader(bytes_stream)

Write to bytes_stream
writer = PdfWriter()
with BytesIO() as bytes_stream:

writer.write(bytes_stream)

17.1 Writing a PDF directly to AWS S3

Suppose you want to manipulate a PDF and write it directly to AWS S3 without having to write the document to a file
first. We have the original PDF in raw_bytes_data as bytes and want to set my-secret-password:

from io import BytesIO

import boto3
from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader(BytesIO(raw_bytes_data))
writer = PdfWriter()

Add all pages to the writer
for page in reader.pages:

writer.add_page(page)

Add a password to the new PDF
writer.encrypt("my-secret-password")

(continues on next page)

61

PyPDF2

(continued from previous page)

Save the new PDF to a file
with BytesIO() as bytes_stream:

writer.write(bytes_stream)
bytes_stream.seek(0)
s3 = boto3.client("s3")
s3.write_get_object_response(

Body=bytes_stream, RequestRoute=request_route, RequestToken=request_token
)

17.2 Reading PDFs directly from cloud services

One option is to first download the file and then pass the local file path to PdfReader. Another option is to get a byte
stream.

For AWS S3 it works like this:

from io import BytesIO

import boto3
from PyPDF2 import PdfReader

s3 = boto3.client("s3")
obj = s3.get_object(Body=csv_buffer.getvalue(), Bucket="my-bucket", Key="my/doc.pdf")
reader = PdfReader(BytesIO(obj["Body"].read()))

It works similarly for Google Cloud Storage (example)

62 Chapter 17. Streaming Data with PyPDF2

https://stackoverflow.com/a/68403628/562769

CHAPTER

EIGHTEEN

REDUCE PDF SIZE

There are multiple ways to reduce the size of a given PDF file. The easiest one is to remove content (e.g. images) or
pages.

18.1 Removing duplication

Some PDF documents contain the same object multiple times. For example, if an image appears three times in a PDF
it could be embedded three times. Or it can be embedded once and referenced twice.

This can be done by reading and writing the file:

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("big-old-file.pdf")
writer = PdfWriter()

for page in reader.pages:
writer.add_page(page)

writer.add_metadata(reader.metadata)

with open("smaller-new-file.pdf", "wb") as fp:
writer.write(fp)

It depends on the PDF how well this works, but we have seen an 86% file reduction (from 5.7 MB to 0.8 MB) within a
real PDF.

18.2 Remove images

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("example.pdf")
writer = PdfWriter()

for page in reader.pages:
writer.add_page(page)

writer.remove_images()
(continues on next page)

63

PyPDF2

(continued from previous page)

with open("out.pdf", "wb") as f:
writer.write(f)

18.3 Lossless Compression

PyPDF2 supports the FlateDecode filter which uses the zlib/deflate compression method. It is a lossless compression,
meaning the resulting PDF looks exactly the same.

Deflate compression can be applied to a page via page.compress_content_streams:

from PyPDF2 import PdfReader, PdfWriter

reader = PdfReader("example.pdf")
writer = PdfWriter()

for page in reader.pages:
page.compress_content_streams() # This is CPU intensive!
writer.add_page(page)

with open("out.pdf", "wb") as f:
writer.write(f)

Using this method, we have seen a reduction by 70% (from 11.8 MB to 3.5 MB) with a real PDF.

64 Chapter 18. Reduce PDF Size

https://pypdf2.readthedocs.io/en/latest/modules/PageObject.html#PyPDF2._page.PageObject.compress_content_streams

CHAPTER

NINETEEN

PDF VERSION SUPPORT

PDF comes in the following versions:

• 1993: 1.0

• 1994: 1.1

• 1996: 1.2

• 1999: 1.3

• 2001: 1.4

• 2003: 1.5

• 2004: 1.6

• 2006 - 2012: 1.7, ISO 32000-1:2008

• 2017: 2.0

The general format didn’t change, but new features got added. It can be that PyPDF2 can do the operations you want
on PDF 2.0 files without fully supporting all features of PDF 2.0.

19.1 PDF Feature Support by PyPDF2

Feature PDF-Version PyPDF2 Support
Transparent Graphics 1.4 ?
CMaps 1.4
Object Streams 1.5 ?
Cross-reference Streams 1.5 ?
Optional Content Groups (OCGs) - Layers 1.5 ?
Content Stream Compression 1.5 ?
AES Encryption 1.6

See History of PDF for more features.

Some PDF features are not supported by PyPDF2, but other libraries can be used for them:

• pyHanko: Cryptographically sign a PDF (#302)

• camelot-py: Table Extraction (#231)

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

65

https://en.wikipedia.org/wiki/History_of_PDF
https://pyhanko.readthedocs.io/en/latest/index.html
https://github.com/py-pdf/PyPDF2/issues/302
https://pypi.org/project/camelot-py/
https://github.com/py-pdf/PyPDF2/issues/231
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

66 Chapter 19. PDF Version Support

CHAPTER

TWENTY

THE PDFREADER CLASS

class PyPDF2.PdfReader(stream: Union[str, IO, Path], strict: bool = False, password: Union[None, str, bytes] =
None)

Bases: object

Initialize a PdfReader object.

This operation can take some time, as the PDF stream’s cross-reference tables are read into memory.

Parameters

• stream – A File object or an object that supports the standard read and seek methods similar
to a File object. Could also be a string representing a path to a PDF file.

• strict (bool) – Determines whether user should be warned of all problems and also causes
some correctable problems to be fatal. Defaults to False.

• password (None/str/bytes) – Decrypt PDF file at initialization. If the password is None,
the file will not be decrypted. Defaults to None

cacheGetIndirectObject(generation: int, idnum: int)→ Optional[PdfObject]
Deprecated since version 1.28.0: Use cache_get_indirect_object() instead.

cacheIndirectObject(generation: int, idnum: int, obj: Optional[PdfObject])→ Optional[PdfObject]
Deprecated since version 1.28.0: Use cache_indirect_object() instead.

cache_get_indirect_object(generation: int, idnum: int)→ Optional[PdfObject]

cache_indirect_object(generation: int, idnum: int, obj: Optional[PdfObject])→ Optional[PdfObject]

decode_permissions(permissions_code: int)→ Dict[str, bool]

decrypt(password: Union[str, bytes])→ PasswordType
When using an encrypted / secured PDF file with the PDF Standard encryption handler, this function will
allow the file to be decrypted. It checks the given password against the document’s user password and
owner password, and then stores the resulting decryption key if either password is correct.

It does not matter which password was matched. Both passwords provide the correct decryption key that
will allow the document to be used with this library.

Parameters
password (str) – The password to match.

Returns
PasswordType.

67

PyPDF2

property documentInfo: Optional[DocumentInformation]

Deprecated since version 1.28.0.

Use the attribute metadata instead.

getDestinationPageNumber(destination: Destination)→ int
Deprecated since version 1.28.0: Use get_destination_page_number() instead.

getDocumentInfo()→ Optional[DocumentInformation]
Deprecated since version 1.28.0: Use the attribute metadata instead.

getFields(tree: Optional[TreeObject] = None, retval: Optional[Dict[Any, Any]] = None, fileobj:
Optional[Any] = None)→ Optional[Dict[str, Any]]

Deprecated since version 1.28.0: Use get_fields() instead.

getFormTextFields()→ Dict[str, Any]
Deprecated since version 1.28.0: Use get_form_text_fields() instead.

getIsEncrypted()→ bool
Deprecated since version 1.28.0: Use is_encrypted instead.

getNamedDestinations(tree: Optional[TreeObject] = None, retval: Optional[Any] = None)→ Dict[str,
Any]

Deprecated since version 1.28.0: Use named_destinations instead.

getNumPages()→ int
Deprecated since version 1.28.0: Use len(reader.pages) instead.

getObject(indirectReference: IndirectObject)→ Optional[PdfObject]
Deprecated since version 1.28.0: Use get_object() instead.

getOutlines(node: Optional[DictionaryObject] = None, outline: Optional[Any] = None)→
List[Union[Destination, List[Union[Destination, List[Destination]]]]]

Deprecated since version 1.28.0: Use outline instead.

getPage(pageNumber: int)→ PageObject
Deprecated since version 1.28.0: Use reader.pages[page_number] instead.

getPageLayout()→ Optional[str]
Deprecated since version 1.28.0: Use page_layout instead.

getPageMode()→ Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments']]

Deprecated since version 1.28.0: Use page_mode instead.

getPageNumber(page: PageObject)→ int
Deprecated since version 1.28.0: Use get_page_number() instead.

getXmpMetadata()→ Optional[XmpInformation]
Deprecated since version 1.28.0: Use the attribute xmp_metadata instead.

get_destination_page_number(destination: Destination)→ int
Retrieve page number of a given Destination object.

Parameters
destination (Destination) – The destination to get page number.

Returns
the page number or -1 if page not found

68 Chapter 20. The PdfReader Class

PyPDF2

get_fields(tree: Optional[TreeObject] = None, retval: Optional[Dict[Any, Any]] = None, fileobj:
Optional[Any] = None)→ Optional[Dict[str, Any]]

Extract field data if this PDF contains interactive form fields.

The tree and retval parameters are for recursive use.

Parameters
fileobj – A file object (usually a text file) to write a report to on all interactive form fields
found.

Returns
A dictionary where each key is a field name, and each value is a Field object. By default,
the mapping name is used for keys. None if form data could not be located.

get_form_text_fields()→ Dict[str, Any]
Retrieve form fields from the document with textual data.

The key is the name of the form field, the value is the content of the field.

If the document contains multiple form fields with the same name, the second and following will get the
suffix _2, _3, . . .

get_object(indirect_reference: Union[int, IndirectObject])→ Optional[PdfObject]

get_page_number(page: PageObject)→ int
Retrieve page number of a given PageObject

Parameters
page (PageObject) – The page to get page number. Should be an instance of PageObject

Returns
the page number or -1 if page not found

property isEncrypted: bool

Deprecated since version 1.28.0.

Use is_encrypted instead.

property is_encrypted: bool

Read-only boolean property showing whether this PDF file is encrypted. Note that this property, if true,
will remain true even after the decrypt() method is called.

property metadata: Optional[DocumentInformation]

Retrieve the PDF file’s document information dictionary, if it exists. Note that some PDF files use metadata
streams instead of docinfo dictionaries, and these metadata streams will not be accessed by this function.

Returns
the document information of this PDF file

property namedDestinations: Dict[str, Any]

Deprecated since version 1.28.0.

Use named_destinations instead.

property named_destinations: Dict[str, Any]

A read-only dictionary which maps names to Destinations

property numPages: int

Deprecated since version 1.28.0.

Use len(reader.pages) instead.

69

PyPDF2

property outline: List[Union[Destination, List[Union[Destination,
List[Destination]]]]]

Read-only property for the outline (i.e., a collection of ‘outline items’ which are also known as ‘bookmarks’)
present in the document.

Returns
a nested list of Destinations.

property outlines: List[Union[Destination, List[Union[Destination,
List[Destination]]]]]

Deprecated since version 2.9.0.

Use outline instead.

property pageLayout: Optional[str]

Deprecated since version 1.28.0.

Use page_layout instead.

property pageMode: Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs',
'/FullScreen', '/UseOC', '/UseAttachments']]

Deprecated since version 1.28.0.

Use page_mode instead.

property page_layout: Optional[str]

Get the page layout.

Returns
Page layout currently being used.

Table 1: Valid layout values
/NoLayout Layout explicitly not specified
/SinglePage Show one page at a time
/OneColumn Show one column at a time
/TwoColumnLeft Show pages in two columns, odd-numbered pages on the left
/TwoColumn-
Right

Show pages in two columns, odd-numbered pages on the right

/TwoPageLeft Show two pages at a time, odd-numbered pages on the left
/TwoPageRight Show two pages at a time, odd-numbered pages on the right

property page_mode: Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs',
'/FullScreen', '/UseOC', '/UseAttachments']]

Get the page mode.

Returns
Page mode currently being used.

Table 2: Valid mode values
/UseNone Do not show outline or thumbnails panels
/UseOutlines Show outline (aka bookmarks) panel
/UseThumbs Show page thumbnails panel
/FullScreen Fullscreen view
/UseOC Show Optional Content Group (OCG) panel
/UseAttachments Show attachments panel

70 Chapter 20. The PdfReader Class

PyPDF2

property pages: List[PageObject]

Read-only property that emulates a list of Page objects.

property pdf_header: str

read(stream: IO)→ None

readNextEndLine(stream: IO, limit_offset: int = 0)→ bytes
Deprecated since version 1.28.0.

readObjectHeader(stream: IO)→ Tuple[int, int]
Deprecated since version 1.28.0: Use read_object_header() instead.

read_next_end_line(stream: IO, limit_offset: int = 0)→ bytes
Deprecated since version 2.1.0.

read_object_header(stream: IO)→ Tuple[int, int]

property threads: Optional[ArrayObject]

Read-only property for the list of threads see §8.3.2 from PDF 1.7 spec

Returns
an Array of Dictionnaries with “/F” and “/I” properties or None if no articles.

property xfa: Optional[Dict[str, Any]]

property xmpMetadata: Optional[XmpInformation]

Deprecated since version 1.28.0.

Use the attribute xmp_metadata instead.

property xmp_metadata: Optional[XmpInformation]

XMP (Extensible Metadata Platform) data

Returns
a XmpInformation instance that can be used to access XMP metadata from the document.
or None if no metadata was found on the document root.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

71

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

72 Chapter 20. The PdfReader Class

CHAPTER

TWENTYONE

THE PDFWRITER CLASS

class PyPDF2.PdfWriter(fileobj: Union[str, IO] = '')
Bases: object

This class supports writing PDF files out, given pages produced by another class (typically PdfReader).

addAttachment(fname: str, fdata: Union[str, bytes])→ None
Deprecated since version 1.28.0: Use add_attachment() instead.

addBlankPage(width: Optional[float] = None, height: Optional[float] = None)→ PageObject
Deprecated since version 1.28.0: Use add_blank_page() instead.

addBookmark(title: str, pagenum: int, parent: Union[None, TreeObject, IndirectObject] = None, color:
Optional[Tuple[float, float, float]] = None, bold: bool = False, italic: bool = False, fit:
Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ IndirectObject

Deprecated since version 1.28.0: Use add_outline_item() instead.

addBookmarkDestination(dest: PageObject, parent: Optional[TreeObject] = None)→ IndirectObject
Deprecated since version 1.28.0: Use add_outline_item_destination() instead.

addBookmarkDict(outline_item: Union[OutlineItem, Destination], parent: Optional[TreeObject] = None)
→ IndirectObject

Deprecated since version 1.28.0: Use add_outline_item_dict() instead.

addJS(javascript: str)→ None
Deprecated since version 1.28.0: Use add_js() instead.

addLink(pagenum: int, page_destination: int, rect: RectangleObject, border: Optional[ArrayObject] = None,
fit: Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ None

Deprecated since version 1.28.0: Use add_link() instead.

addMetadata(infos: Dict[str, Any])→ None
Deprecated since version 1.28.0: Use add_metadata() instead.

addNamedDestination(title: str, pagenum: int)→ IndirectObject
Deprecated since version 1.28.0: Use add_named_destination() instead.

addNamedDestinationObject(dest: Destination)→ IndirectObject
Deprecated since version 1.28.0: Use add_named_destination_object() instead.

addPage(page: PageObject, excluded_keys: Iterable[str] = ())→ PageObject
Deprecated since version 1.28.0: Use add_page() instead.

73

PyPDF2

addURI(pagenum: int, uri: str, rect: RectangleObject, border: Optional[ArrayObject] = None)→ None
Deprecated since version 1.28.0: Use add_uri() instead.

add_annotation(page_number: int, annotation: Dict[str, Any])→ None

add_attachment(filename: str, data: Union[str, bytes])→ None
Embed a file inside the PDF.

Parameters

• filename (str) – The filename to display.

• data (str) – The data in the file.

Reference: https://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
Section 7.11.3

add_blank_page(width: Optional[float] = None, height: Optional[float] = None)→ PageObject
Append a blank page to this PDF file and returns it. If no page size is specified, use the size of the last page.

Parameters

• width (float) – The width of the new page expressed in default user space units.

• height (float) – The height of the new page expressed in default user space units.

Returns
the newly appended page

Raises
PageSizeNotDefinedError – if width and height are not defined and previous page does
not exist.

add_bookmark(title: str, pagenum: int, parent: Union[None, TreeObject, IndirectObject] = None, color:
Optional[Tuple[float, float, float]] = None, bold: bool = False, italic: bool = False, fit:
Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ IndirectObject

Deprecated since version 2.9.0: Use add_outline_item() instead.

add_bookmark_destination(dest: Union[PageObject, TreeObject], parent: Union[None, TreeObject,
IndirectObject] = None)→ IndirectObject

Deprecated since version 2.9.0: Use add_outline_item_destination() instead.

add_bookmark_dict(outline_item: Union[OutlineItem, Destination], parent: Optional[TreeObject] = None)
→ IndirectObject

Deprecated since version 2.9.0: Use add_outline_item_dict() instead.

add_filtered_articles(fltr: Union[Pattern, str], pages: Dict[int, PageObject], reader: PdfReader)→
None

Add articles matching the defined criteria

add_js(javascript: str)→ None
Add Javascript which will launch upon opening this PDF.

Parameters
javascript (str) – Your Javascript.

>>> output.add_js("this.print({bUI:true,bSilent:false,bShrinkToFit:true});")
Example: This will launch the print window when the PDF is opened.

74 Chapter 21. The PdfWriter Class

https://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf

PyPDF2

add_link(pagenum: int, page_destination: int, rect: RectangleObject, border: Optional[ArrayObject] =
None, fit: Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ None

add_metadata(infos: Dict[str, Any])→ None
Add custom metadata to the output.

Parameters
infos (dict) – a Python dictionary where each key is a field and each value is your new
metadata.

add_named_destination(title: str, page_number: Optional[int] = None, pagenum: Optional[int] = None)
→ IndirectObject

add_named_destination_array(title: TextStringObject, destination: Union[IndirectObject, ArrayObject])
→ None

add_named_destination_object(page_destination: Optional[PdfObject] = None, dest:
Optional[PdfObject] = None)→ IndirectObject

add_outline()→ None

add_outline_item(title: str, page_number: ~typing.Union[None, ~PyPDF2._page.PageObject,
~PyPDF2.generic._base.IndirectObject, int], parent: ~typing.Union[None,
~PyPDF2.generic._data_structures.TreeObject,
~PyPDF2.generic._base.IndirectObject] = None, before: ~typing.Union[None,
~PyPDF2.generic._data_structures.TreeObject,
~PyPDF2.generic._base.IndirectObject] = None, color:
~typing.Optional[~typing.Union[~typing.Tuple[float, float, float], str]] = None, bold:
bool = False, italic: bool = False, fit: ~PyPDF2.generic._fit.Fit =
<PyPDF2.generic._fit.Fit object>, pagenum: ~typing.Optional[int] = None)→
IndirectObject

Add an outline item (commonly referred to as a “Bookmark”) to this PDF file.

Parameters

• title (str) – Title to use for this outline item.

• page_number (int) – Page number this outline item will point to.

• parent – A reference to a parent outline item to create nested outline items.

• parent – A reference to a parent outline item to create nested outline items.

• color (tuple) – Color of the outline item’s font as a red, green, blue tuple from 0.0 to 1.0
or as a Hex String (#RRGGBB)

• bold (bool) – Outline item font is bold

• italic (bool) – Outline item font is italic

• fit (Fit) – The fit of the destination page.

add_outline_item_destination(page_destination: Union[None, PageObject, TreeObject] = None,
parent: Union[None, TreeObject, IndirectObject] = None, before:
Union[None, TreeObject, IndirectObject] = None, dest: Union[None,
PageObject, TreeObject] = None)→ IndirectObject

75

PyPDF2

add_outline_item_dict(outline_item: Union[OutlineItem, Destination], parent: Union[None, TreeObject,
IndirectObject] = None, before: Union[None, TreeObject, IndirectObject] =
None)→ IndirectObject

add_page(page: PageObject, excluded_keys: Iterable[str] = ())→ PageObject
Add a page to this PDF file. Recommended for advanced usage including the adequate excluded_keys

The page is usually acquired from a PdfReader instance.

Parameters
page (PageObject) – The page to add to the document. Should be an instance of
PageObject

add_uri(page_number: int, uri: str, rect: RectangleObject, border: Optional[ArrayObject] = None,
pagenum: Optional[int] = None)→ None

Add an URI from a rectangular area to the specified page. This uses the basic structure of add_link()

Parameters

• page_number (int) – index of the page on which to place the URI action.

• uri (str) – URI of resource to link to.

• rect (Tuple[int, int, int, int]) – RectangleObject or array of four integers
specifying the clickable rectangular area [xLL, yLL, xUR, yUR], or string in the form
"[xLL yLL xUR yUR]".

• border (ArrayObject) – if provided, an array describing border-drawing properties. See
the PDF spec for details. No border will be drawn if this argument is omitted.

append(fileobj: Union[str, IO, PdfReader, Path], outline_item: Union[str, None, PageRange, Tuple[int, int],
Tuple[int, int, int], List[int]] = None, pages: Union[None, PageRange, Tuple[int, int], Tuple[int, int,
int], List[int]] = None, import_outline: bool = True, excluded_fields: Optional[Union[List[str],
Tuple[str, ...]]] = None)→ None

Identical to the merge() method, but assumes you want to concatenate all pages onto the end of the file
instead of specifying a position.

Parameters

• fileobj – A File Object or an object that supports the standard read and seek methods
similar to a File Object. Could also be a string representing a path to a PDF file.

• outline_item (str) – Optionally, you may specify a string to build an outline (aka ‘book-
mark’) to identify the beginning of the included file.

• pages – can be a PageRange or a (start, stop[, step]) tuple or a list of pages to
be processed to merge only the specified range of pages from the source document into the
output document.

• import_outline (bool) – You may prevent the source document’s outline (collection of
outline items, previously referred to as ‘bookmarks’) from being imported by specifying
this as False.

• excluded_fields (List) – provide the list of fields/keys to be ignored if “/Annots” is
part of the list, the annotation will be ignored if “/B” is part of the list, the articles will be
ignored

appendPagesFromReader(reader: PdfReader, after_page_append: Optional[Callable[[PageObject], None]]
= None)→ None

Deprecated since version 1.28.0: Use append_pages_from_reader() instead.

76 Chapter 21. The PdfWriter Class

PyPDF2

append_pages_from_reader(reader: PdfReader, after_page_append: Optional[Callable[[PageObject],
None]] = None)→ None

Copy pages from reader to writer. Includes an optional callback parameter which is invoked after pages are
appended to the writer.

Parameters

• reader (PdfReader) – a PdfReader object from which to copy page annotations to this
writer object. The writer’s annots will then be updated

• after_page_append (Callable[[PageObject], None]) – Callback function that is
invoked after each page is appended to the writer. Signature includes a reference to the
appended page (delegates to append_pages_from_reader). The single parameter of the
callback is a reference to the page just appended to the document.

clean_page(page: Union[PageObject, IndirectObject])→ PageObject
Perform some clean up in the page. Currently: convert NameObject nameddestination to TextStringObject
(required for names/dests list)

cloneDocumentFromReader(reader: PdfReader, after_page_append: Optional[Callable[[PageObject],
None]] = None)→ None

Deprecated since version 1.28.0: Use clone_document_from_reader() instead.

cloneReaderDocumentRoot(reader: PdfReader)→ None
Deprecated since version 1.28.0: Use clone_reader_document_root() instead.

clone_document_from_reader(reader: PdfReader, after_page_append: Optional[Callable[[PageObject],
None]] = None)→ None

Create a copy (clone) of a document from a PDF file reader

Parameters

• reader – PDF file reader instance from which the clone should be created.

• after_page_append (Callable[[PageObject], None]) – Callback function that is
invoked after each page is appended to the writer. Signature includes a reference to the
appended page (delegates to append_pages_from_reader). The single parameter of the
callback is a reference to the page just appended to the document.

clone_reader_document_root(reader: PdfReader)→ None
Copy the reader document root to the writer.

Parameters
reader – PdfReader from the document root should be copied.

close()→ None
To match the functions from Merger

encrypt(user_password: Optional[str] = None, owner_password: Optional[str] = None, use_128bit: bool =
True, permissions_flag: UserAccessPermissions = UserAccessPermissions.PRINT | MODIFY |
EXTRACT | ADD_OR_MODIFY | R7 | R8 | FILL_FORM_FIELDS |
EXTRACT_TEXT_AND_GRAPHICS | ASSEMBLE_DOC | PRINT_TO_REPRESENTATION | R13 |
R14 | R15 | R16 | R17 | R18 | R19 | R20 | R21 | R22 | R23 | R24 | R25 | R26 | R27 | R28 | R29 | R30 |
R31, user_pwd: Optional[str] = None, owner_pwd: Optional[str] = None)→ None

Encrypt this PDF file with the PDF Standard encryption handler.

Parameters

• user_password (str) – The “user password”, which allows for opening and reading the
PDF file with the restrictions provided.

77

PyPDF2

• owner_password (str) – The “owner password”, which allows for opening the PDF files
without any restrictions. By default, the owner password is the same as the user password.

• use_128bit (bool) – flag as to whether to use 128bit encryption. When false, 40bit
encryption will be used. By default, this flag is on.

• permissions_flag (unsigned int) – permissions as described in TABLE 3.20 of the
PDF 1.7 specification. A bit value of 1 means the permission is grantend. Hence an integer
value of -1 will set all flags. Bit position 3 is for printing, 4 is for modifying content, 5 and
6 control annotations, 9 for form fields, 10 for extraction of text and graphics.

find_bookmark(outline_item: Dict[str, Any], root: Optional[List[Union[Destination,
List[Union[Destination, List[Destination]]]]]] = None)→ Optional[List[int]]

Deprecated since version 2.9.0: Use find_outline_item() instead.

find_outline_item(outline_item: Dict[str, Any], root: Optional[List[Union[Destination,
List[Union[Destination, List[Destination]]]]]] = None)→ Optional[List[int]]

getNamedDestRoot()→ ArrayObject
Deprecated since version 1.28.0: Use get_named_dest_root() instead.

getNumPages()→ int
Deprecated since version 1.28.0: Use len(writer.pages) instead.

getObject(ido: Union[int, IndirectObject])→ PdfObject
Deprecated since version 1.28.0: Use get_object() instead.

getOutlineRoot()→ TreeObject
Deprecated since version 1.28.0: Use get_outline_root() instead.

getPage(pageNumber: int)→ PageObject
Deprecated since version 1.28.0: Use writer.pages[page_number] instead.

getPageLayout()→ Optional[Literal['/NoLayout', '/SinglePage', '/OneColumn', '/TwoColumnLeft',
'/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight']]

Deprecated since version 1.28.0: Use page_layout instead.

getPageMode()→ Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments']]

Deprecated since version 1.28.0: Use page_mode instead.

getReference(obj: PdfObject)→ IndirectObject
Deprecated since version 1.28.0: Use get_reference() instead.

get_named_dest_root()→ ArrayObject

get_object(indirect_reference: Union[None, int, IndirectObject] = None, ido: Optional[IndirectObject] =
None)→ PdfObject

get_outline_root()→ TreeObject

get_page(page_number: Optional[int] = None, pageNumber: Optional[int] = None)→ PageObject
Retrieve a page by number from this PDF file.

Parameters
page_number (int) – The page number to retrieve (pages begin at zero)

Returns
the page at the index given by page_number

78 Chapter 21. The PdfWriter Class

PyPDF2

get_reference(obj: PdfObject)→ IndirectObject

get_threads_root()→ ArrayObject
the list of threads see §8.3.2 from PDF 1.7 spec

return
an Array (possibly empty) of Dictionaries with “/F” and “/I” properties

insertBlankPage(width: Optional[Decimal] = None, height: Optional[Decimal] = None, index: int = 0)
→ PageObject

Deprecated since version 1.28.0: Use insertBlankPage() instead.

insertPage(page: PageObject, index: int = 0, excluded_keys: Iterable[str] = ())→ PageObject
Deprecated since version 1.28.0: Use insert_page() instead.

insert_blank_page(width: Optional[Decimal] = None, height: Optional[Decimal] = None, index: int = 0)
→ PageObject

Insert a blank page to this PDF file and returns it. If no page size is specified, use the size of the last page.

Parameters

• width (float) – The width of the new page expressed in default user space units.

• height (float) – The height of the new page expressed in default user space units.

• index (int) – Position to add the page.

Returns
the newly appended page

Raises
PageSizeNotDefinedError – if width and height are not defined and previous page does
not exist.

insert_page(page: PageObject, index: int = 0, excluded_keys: Iterable[str] = ())→ PageObject
Insert a page in this PDF file. The page is usually acquired from a PdfReader instance.

Parameters

• page (PageObject) – The page to add to the document.

• index (int) – Position at which the page will be inserted.

merge(position: Optional[int], fileobj: Union[Path, str, IO, PdfReader], outline_item: Optional[str] = None,
pages: Optional[Union[str, PageRange, Tuple[int, int], Tuple[int, int, int], List[int]]] = None,
import_outline: bool = True, excluded_fields: Optional[Union[List[str], Tuple[str, ...]]] = ())→ None

Merge the pages from the given file into the output file at the specified page number.

Parameters

• position (int) – The page number to insert this file. File will be inserted after the given
number.

• fileobj – A File Object or an object that supports the standard read and seek methods
similar to a File Object. Could also be a string representing a path to a PDF file.

• outline_item (str) – Optionally, you may specify a string to build an outline (aka ‘book-
mark’) to identify the beginning of the included file.

• pages – can be a PageRange or a (start, stop[, step]) tuple or a list of pages to
be processed to merge only the specified range of pages from the source document into the
output document.

79

PyPDF2

• import_outline (bool) – You may prevent the source document’s outline (collection of
outline items, previously referred to as ‘bookmarks’) from being imported by specifying
this as False.

• excluded_fields (List) – provide the list of fields/keys to be ignored if “/Annots” is
part of the list, the annotation will be ignored if “/B” is part of the list, the articles will be
ignored

property open_destination: Union[None, Destination, TextStringObject,
ByteStringObject]

Property to access the opening destination (“/OpenAction” entry in the PDF catalog). it returns None if the
entry does not exist is not set.

:param destination:. the property can be set to a Destination, a Page or an string(NamedDest) or

None (to remove “/OpenAction”)

(value stored in “/OpenAction” entry in the Pdf Catalog)

property pageLayout: Optional[Literal['/NoLayout', '/SinglePage', '/OneColumn',
'/TwoColumnLeft', '/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight']]

Deprecated since version 1.28.0.

Use page_layout instead.

property pageMode: Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs',
'/FullScreen', '/UseOC', '/UseAttachments']]

Deprecated since version 1.28.0.

Use page_mode instead.

property page_layout: Optional[Literal['/NoLayout', '/SinglePage', '/OneColumn',
'/TwoColumnLeft', '/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight']]

Page layout property.

Table 1: Valid layout values
/NoLayout Layout explicitly not specified
/SinglePage Show one page at a time
/OneColumn Show one column at a time
/TwoColumnLeft Show pages in two columns, odd-numbered pages on the left
/TwoColumn-
Right

Show pages in two columns, odd-numbered pages on the right

/TwoPageLeft Show two pages at a time, odd-numbered pages on the left
/TwoPageRight Show two pages at a time, odd-numbered pages on the right

property page_mode: Optional[Literal['/UseNone', '/UseOutlines', '/UseThumbs',
'/FullScreen', '/UseOC', '/UseAttachments']]

Page mode property.

Table 2: Valid mode values
/UseNone Do not show outline or thumbnails panels
/UseOutlines Show outline (aka bookmarks) panel
/UseThumbs Show page thumbnails panel
/FullScreen Fullscreen view
/UseOC Show Optional Content Group (OCG) panel
/UseAttachments Show attachments panel

80 Chapter 21. The PdfWriter Class

PyPDF2

property pages: List[PageObject]

Property that emulates a list of PageObject.

property pdf_header: bytes

Header of the PDF document that is written.

This should be something like b’%PDF-1.5’. It is recommended to set the lowest version that supports all
features which are used within the PDF file.

removeImages(ignoreByteStringObject: bool = False)→ None
Deprecated since version 1.28.0: Use remove_images() instead.

removeLinks()→ None
Deprecated since version 1.28.0: Use remove_links() instead.

removeText(ignoreByteStringObject: bool = False)→ None
Deprecated since version 1.28.0: Use remove_text() instead.

remove_images(ignore_byte_string_object: bool = False)→ None
Remove images from this output.

Parameters
ignore_byte_string_object (bool) – optional parameter to ignore ByteString Objects.

remove_links()→ None
Remove links and annotations from this output.

remove_text(ignore_byte_string_object: bool = False)→ None
Remove text from this output.

Parameters
ignore_byte_string_object (bool) – optional parameter to ignore ByteString Objects.

reset_translation(reader: Union[None, PdfReader, IndirectObject] = None)→ None
reset the translation table between reader and the writer object. late cloning will create new independent
objects

Parameters
reader – PdfReader or IndirectObject refering a PdfReader object. if set to None or omitted,
all tables will be reset.

setPageLayout(layout: Literal['/NoLayout', '/SinglePage', '/OneColumn', '/TwoColumnLeft',
'/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight'])→ None

Deprecated since version 1.28.0: Use page_layout instead.

setPageMode(mode: Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments'])→ None

Deprecated since version 1.28.0: Use page_mode instead.

set_need_appearances_writer()→ None

set_page_layout(layout: Literal['/NoLayout', '/SinglePage', '/OneColumn', '/TwoColumnLeft',
'/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight'])→ None

Set the page layout.

Parameters
layout (str) – The page layout to be used

81

PyPDF2

Table 3: Valid layout arguments
/NoLayout Layout explicitly not specified
/SinglePage Show one page at a time
/OneColumn Show one column at a time
/TwoColumnLeft Show pages in two columns, odd-numbered pages on the left
/TwoColumn-
Right

Show pages in two columns, odd-numbered pages on the right

/TwoPageLeft Show two pages at a time, odd-numbered pages on the left
/TwoPageRight Show two pages at a time, odd-numbered pages on the right

set_page_mode(mode: Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments'])→ None

Deprecated since version 1.28.0: Use page_mode instead.

property threads: ArrayObject

Read-only property for the list of threads see §8.3.2 from PDF 1.7 spec

Returns
an Array (possibly empty) of Dictionaries with “/F” and “/I” properties

updatePageFormFieldValues(page: ~PyPDF2._page.PageObject, fields: ~typing.Dict[str, ~typing.Any],
flags: ~PyPDF2.constants.FieldFlag = FieldFlag.None)→ None

Deprecated since version 1.28.0: Use update_page_form_field_values() instead.

update_page_form_field_values(page: ~PyPDF2._page.PageObject, fields: ~typing.Dict[str,
~typing.Any], flags: ~PyPDF2.constants.FieldFlag = FieldFlag.None)
→ None

Update the form field values for a given page from a fields dictionary.

Copy field texts and values from fields to page. If the field links to a parent object, add the information to
the parent.

Parameters

• page (PageObject) – Page reference from PDF writer where the annotations and field
data will be updated.

• fields (dict) – a Python dictionary of field names (/T) and text values (/V)

• flags (int) – An integer (0 to 7). The first bit sets ReadOnly, the second bit sets Required,
the third bit sets NoExport. See PDF Reference Table 8.70 for details.

write(stream: Union[Path, str, IO])→ Tuple[bool, IO]
Write the collection of pages added to this object out as a PDF file.

Parameters
stream – An object to write the file to. The object can support the write method and the tell
method, similar to a file object, or be a file path, just like the fileobj, just named it stream to
keep existing workflow.

write_stream(stream: IO)→ None

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

82 Chapter 21. The PdfWriter Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

83

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

84 Chapter 21. The PdfWriter Class

CHAPTER

TWENTYTWO

THE PDFMERGER CLASS

class PyPDF2.PdfMerger(strict: bool = False, fileobj: Union[Path, str, IO] = '')
Bases: object

Initialize a PdfMerger object.

PdfMerger merges multiple PDFs into a single PDF. It can concatenate, slice, insert, or any combination of the
above.

See the functions merge() (or append()) and write() for usage information.

Parameters

• strict (bool) – Determines whether user should be warned of all problems and also causes
some correctable problems to be fatal. Defaults to False.

• fileobj – Output file. Can be a filename or any kind of file-like object.

addBookmark(title: str, pagenum: int, parent: Union[None, TreeObject, IndirectObject] = None, color:
Optional[Tuple[float, float, float]] = None, bold: bool = False, italic: bool = False, fit:
Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ IndirectObject

Deprecated since version 1.28.0: Use add_outline_item() instead.

addMetadata(infos: Dict[str, Any])→ None
Deprecated since version 1.28.0: Use add_metadata() instead.

addNamedDestination(title: str, pagenum: int)→ None
Deprecated since version 1.28.0: Use add_named_destination() instead.

add_bookmark(title: str, pagenum: int, parent: Union[None, TreeObject, IndirectObject] = None, color:
Optional[Tuple[float, float, float]] = None, bold: bool = False, italic: bool = False, fit:
Literal['/Fit', '/XYZ', '/FitH', '/FitV', '/FitR', '/FitB', '/FitBH', '/FitBV'] = '/Fit', *args:
Union[NumberObject, NullObject, float])→ IndirectObject

Deprecated since version 2.9.0: Use add_outline_item() instead.

add_metadata(infos: Dict[str, Any])→ None
Add custom metadata to the output.

Parameters
infos (dict) – a Python dictionary where each key is a field and each value is your new
metadata. Example: {u'/Title': u'My title'}

add_named_destination(title: str, page_number: Optional[int] = None, pagenum: Optional[int] = None)
→ None

Add a destination to the output.

85

PyPDF2

Parameters

• title (str) – Title to use

• page_number (int) – Page number this destination points at.

add_outline_item(title: str, page_number: ~typing.Optional[int] = None, parent: ~typing.Union[None,
~PyPDF2.generic._data_structures.TreeObject,
~PyPDF2.generic._base.IndirectObject] = None, color:
~typing.Optional[~typing.Tuple[float, float, float]] = None, bold: bool = False, italic:
bool = False, fit: ~PyPDF2.generic._fit.Fit = <PyPDF2.generic._fit.Fit object>,
pagenum: ~typing.Optional[int] = None)→ IndirectObject

Add an outline item (commonly referred to as a “Bookmark”) to this PDF file.

Parameters

• title (str) – Title to use for this outline item.

• page_number (int) – Page number this outline item will point to.

• parent – A reference to a parent outline item to create nested outline items.

• color (tuple) – Color of the outline item’s font as a red, green, blue tuple from 0.0 to 1.0

• bold (bool) – Outline item font is bold

• italic (bool) – Outline item font is italic

• fit (Fit) – The fit of the destination page.

append(fileobj: Union[str, IO, PdfReader, Path], outline_item: Optional[str] = None, pages: Union[None,
PageRange, Tuple[int, int], Tuple[int, int, int], List[int]] = None, import_outline: bool = True)→
None

Identical to the merge() method, but assumes you want to concatenate all pages onto the end of the file
instead of specifying a position.

Parameters

• fileobj – A File Object or an object that supports the standard read and seek methods
similar to a File Object. Could also be a string representing a path to a PDF file.

• outline_item (str) – Optionally, you may specify an outline item (previously referred
to as a ‘bookmark’) to be applied at the beginning of the included file by supplying the text
of the outline item.

• pages – can be a PageRange or a (start, stop[, step]) tuple to merge only the
specified range of pages from the source document into the output document. Can also be
a list of pages to append.

• import_outline (bool) – You may prevent the source document’s outline (collection of
outline items, previously referred to as ‘bookmarks’) from being imported by specifying
this as False.

close()→ None
Shut all file descriptors (input and output) and clear all memory usage.

find_bookmark(outline_item: Dict[str, Any], root: Optional[List[Union[Destination,
List[Union[Destination, List[Destination]]]]]] = None)→ Optional[List[int]]

Deprecated since version 2.9.0: Use find_outline_item() instead.

find_outline_item(outline_item: Dict[str, Any], root: Optional[List[Union[Destination,
List[Union[Destination, List[Destination]]]]]] = None)→ Optional[List[int]]

86 Chapter 22. The PdfMerger Class

PyPDF2

merge(page_number: Optional[int] = None, fileobj: Union[Path, str, IO, PdfReader] = None, outline_item:
Optional[str] = None, pages: Optional[Union[str, PageRange, Tuple[int, int], Tuple[int, int, int],
List[int]]] = None, import_outline: bool = True, position: Optional[int] = None)→ None

Merge the pages from the given file into the output file at the specified page number.

Parameters

• page_number (int) – The page number to insert this file. File will be inserted after the
given number.

• fileobj – A File Object or an object that supports the standard read and seek methods
similar to a File Object. Could also be a string representing a path to a PDF file.

• outline_item (str) – Optionally, you may specify an outline item (previously referred
to as a ‘bookmark’) to be applied at the beginning of the included file by supplying the text
of the outline item.

• pages – can be a PageRange or a (start, stop[, step]) tuple to merge only the
specified range of pages from the source document into the output document. Can also be
a list of pages to merge.

• import_outline (bool) – You may prevent the source document’s outline (collection of
outline items, previously referred to as ‘bookmarks’) from being imported by specifying
this as False.

setPageLayout(layout: Literal['/NoLayout', '/SinglePage', '/OneColumn', '/TwoColumnLeft',
'/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight'])→ None

Deprecated since version 1.28.0: Use set_page_layout() instead.

setPageMode(mode: Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments'])→ None

Deprecated since version 1.28.0: Use set_page_mode() instead.

set_page_layout(layout: Literal['/NoLayout', '/SinglePage', '/OneColumn', '/TwoColumnLeft',
'/TwoColumnRight', '/TwoPageLeft', '/TwoPageRight'])→ None

Set the page layout.

Parameters
layout (str) – The page layout to be used

Table 1: Valid layout arguments
/NoLayout Layout explicitly not specified
/SinglePage Show one page at a time
/OneColumn Show one column at a time
/TwoColumnLeft Show pages in two columns, odd-numbered pages on the left
/TwoColumn-
Right

Show pages in two columns, odd-numbered pages on the right

/TwoPageLeft Show two pages at a time, odd-numbered pages on the left
/TwoPageRight Show two pages at a time, odd-numbered pages on the right

set_page_mode(mode: Literal['/UseNone', '/UseOutlines', '/UseThumbs', '/FullScreen', '/UseOC',
'/UseAttachments'])→ None

Set the page mode.

Parameters
mode (str) – The page mode to use.

87

PyPDF2

Table 2: Valid mode arguments
/UseNone Do not show outline or thumbnails panels
/UseOutlines Show outline (aka bookmarks) panel
/UseThumbs Show page thumbnails panel
/FullScreen Fullscreen view
/UseOC Show Optional Content Group (OCG) panel
/UseAttachments Show attachments panel

write(fileobj: Union[Path, str, IO])→ None
Write all data that has been merged to the given output file.

Parameters
fileobj – Output file. Can be a filename or any kind of file-like object.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

88 Chapter 22. The PdfMerger Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYTHREE

THE PAGEOBJECT CLASS

class PyPDF2._page.PageObject(pdf: Optional[PdfReaderProtocol] = None, indirect_reference:
Optional[IndirectObject] = None, indirect_ref: Optional[IndirectObject] =
None)

Bases: DictionaryObject

PageObject represents a single page within a PDF file.

Typically this object will be created by accessing the get_page() method of the PdfReader class, but it is also
possible to create an empty page with the create_blank_page() static method.

Parameters

• pdf – PDF file the page belongs to.

• indirect_reference – Stores the original indirect reference to this object in its source
PDF

addTransformation(ctm: Tuple[float, float, float, float, float, float])→ None
Deprecated since version 1.28.0: Use add_transformation() instead.

add_transformation(ctm: Union[Transformation, Tuple[float, float, float, float, float, float]], expand: bool
= False)→ None

Apply a transformation matrix to the page.

Parameters
ctm – A 6-element tuple containing the operands of the transformation matrix. Alternatively,
a Transformation object can be passed.

See Cropping and Transforming PDFs.

property annotations: Optional[ArrayObject]

property artBox: RectangleObject

Deprecated since version 1.28.0.

Use artbox instead.

property artbox

A RectangleObject, expressed in default user space units, defining the extent of the page’s meaningful
content as intended by the page’s creator.

property bleedBox: RectangleObject

Deprecated since version 1.28.0.

Use bleedbox instead.

89

PyPDF2

property bleedbox

A RectangleObject, expressed in default user space units, defining the region to which the contents of
the page should be clipped when output in a production environment.

compressContentStreams()→ None
Deprecated since version 1.28.0: Use compress_content_streams() instead.

compress_content_streams()→ None
Compress the size of this page by joining all content streams and applying a FlateDecode filter.

However, it is possible that this function will perform no action if content stream compression becomes
“automatic”.

static createBlankPage(pdf: Optional[Any] = None, width: Optional[Union[float, Decimal]] = None,
height: Optional[Union[float, Decimal]] = None)→ PageObject

Deprecated since version 1.28.0: Use create_blank_page() instead.

static create_blank_page(pdf: Optional[Any] = None, width: Optional[Union[float, Decimal]] = None,
height: Optional[Union[float, Decimal]] = None)→ PageObject

Return a new blank page.

If width or height is None, try to get the page size from the last page of pdf.

Parameters

• pdf – PDF file the page belongs to

• width – The width of the new page expressed in default user space units.

• height – The height of the new page expressed in default user space units.

Returns
The new blank page

Raises
PageSizeNotDefinedError – if pdf is None or contains no page

property cropBox: RectangleObject

Deprecated since version 1.28.0.

Use cropbox instead.

property cropbox

A RectangleObject, expressed in default user space units, defining the visible region of default user
space. When the page is displayed or printed, its contents are to be clipped (cropped) to this rectangle
and then imposed on the output medium in some implementation-defined manner. Default value: same as
mediabox.

extractText(Tj_sep: str = '', TJ_sep: str = '')→ str
Deprecated since version 1.28.0: Use extract_text() instead.

extract_text(*args: Any, Tj_sep: str = None, TJ_sep: str = None, orientations: Union[int, Tuple[int, ...]]
= (0, 90, 180, 270), space_width: float = 200.0, visitor_operand_before:
Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_operand_after:
Optional[Callable[[Any, Any, Any, Any], None]] = None, visitor_text:
Optional[Callable[[Any, Any, Any, Any, Any], None]] = None)→ str

Locate all text drawing commands, in the order they are provided in the content stream, and extract the text.

This works well for some PDF files, but poorly for others, depending on the generator used. This will be
refined in the future.

90 Chapter 23. The PageObject Class

PyPDF2

Do not rely on the order of text coming out of this function, as it will change if this function is made more
sophisticated.

Arabic, Hebrew,. . . are extracted in the good order. If required an custom RTL range of characters can be
defined; see function set_custom_rtl

Additionally you can provide visitor-methods to get informed on all operands and all text-objects. For
example in some PDF files this can be useful to parse tables.

Parameters

• Tj_sep – Deprecated. Kept for compatibility until PyPDF2 4.0.0

• TJ_sep – Deprecated. Kept for compatibility until PyPDF2 4.0.0

• orientations – list of orientations text_extraction will look for default = (0, 90, 180,
270) note: currently only 0(Up),90(turned Left), 180(upside Down), 270 (turned Right)

• space_width – force default space width if not extracted from font (default: 200)

• visitor_operand_before – function to be called before processing an operand. It has
four arguments: operand, operand-arguments, current transformation matrix and text ma-
trix.

• visitor_operand_after – function to be called after processing an operand. It has four
arguments: operand, operand-arguments, current transformation matrix and text matrix.

• visitor_text – function to be called when extracting some text at some position. It has
five arguments: text, current transformation matrix, text matrix, font-dictionary and font-
size. The font-dictionary may be None in case of unknown fonts. If not None it may e.g.
contain key “/BaseFont” with value “/Arial,Bold”.

Returns
The extracted text

extract_xform_text(xform: EncodedStreamObject, orientations: Tuple[int, ...] = (0, 90, 270, 360),
space_width: float = 200.0, visitor_operand_before: Optional[Callable[[Any, Any,
Any, Any], None]] = None, visitor_operand_after: Optional[Callable[[Any, Any, Any,
Any], None]] = None, visitor_text: Optional[Callable[[Any, Any, Any, Any, Any],
None]] = None)→ str

Extract text from an XObject.

Parameters
space_width – force default space width (if not extracted from font (default 200)

Returns
The extracted text

getContents()→ Optional[ContentStream]
Deprecated since version 1.28.0: Use get_contents() instead.

get_contents()→ Optional[ContentStream]
Access the page contents.

Returns
the /Contents object, or None if it doesn’t exist. /Contents is optional, as described in
PDF Reference 7.7.3.3

hash_value_data()→ bytes

91

PyPDF2

property images: List[File]

Get a list of all images of the page.

This requires pillow. You can install it via ‘pip install PyPDF2[image]’.

For the moment, this does NOT include inline images. They will be added in future.

property indirect_ref: Optional[IndirectObject]

property mediaBox: RectangleObject

Deprecated since version 1.28.0.

Use mediabox instead.

property mediabox

A RectangleObject, expressed in default user space units, defining the boundaries of the physical
medium on which the page is intended to be displayed or printed.

mergePage(page2: PageObject)→ None
Deprecated since version 1.28.0: Use merge_page() instead.

mergeRotatedPage(page2: PageObject, rotation: float, expand: bool = False)→ None
mergeRotatedPage is similar to merge_page, but the stream to be merged is rotated by applying a transfor-
mation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

• rotation (float) – The angle of the rotation, in degrees

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeRotatedScaledPage(page2: PageObject, rotation: float, scale: float, expand: bool = False)→ None
mergeRotatedScaledPage is similar to merge_page, but the stream to be merged is rotated and scaled by
applying a transformation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

• rotation (float) – The angle of the rotation, in degrees

• scale (float) – The scaling factor

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeRotatedScaledTranslatedPage(page2: PageObject, rotation: float, scale: float, tx: float, ty: float,
expand: bool = False)→ None

mergeRotatedScaledTranslatedPage is similar to merge_page, but the stream to be merged is translated,
rotated and scaled by applying a transformation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

92 Chapter 23. The PageObject Class

PyPDF2

• tx (float) – The translation on X axis

• ty (float) – The translation on Y axis

• rotation (float) – The angle of the rotation, in degrees

• scale (float) – The scaling factor

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeRotatedTranslatedPage(page2: PageObject, rotation: float, tx: float, ty: float, expand: bool =
False)→ None

mergeRotatedTranslatedPage is similar to merge_page, but the stream to be merged is rotated and translated
by applying a transformation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

• tx (float) – The translation on X axis

• ty (float) – The translation on Y axis

• rotation (float) – The angle of the rotation, in degrees

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeScaledPage(page2: PageObject, scale: float, expand: bool = False)→ None
mergeScaledPage is similar to merge_page, but the stream to be merged is scaled by applying a transfor-
mation matrix.

Parameters

• page2 (PageObject) – The page to be merged into this one. Should be an instance of
PageObject.

• scale (float) – The scaling factor

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeScaledTranslatedPage(page2: PageObject, scale: float, tx: float, ty: float, expand: bool = False)→
None

mergeScaledTranslatedPage is similar to merge_page, but the stream to be merged is translated and scaled
by applying a transformation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

• scale (float) – The scaling factor

• tx (float) – The translation on X axis

• ty (float) – The translation on Y axis

93

PyPDF2

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeTransformedPage(page2: PageObject, ctm: Union[Tuple[float, float, float, float, float, float],
Transformation], expand: bool = False)→ None

mergeTransformedPage is similar to merge_page, but a transformation matrix is applied to the merged
stream.

Parameters

• page2 (PageObject) – The page to be merged into this one. Should be an instance of
PageObject.

• ctm (tuple) – a 6-element tuple containing the operands of the transformation matrix

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

mergeTranslatedPage(page2: PageObject, tx: float, ty: float, expand: bool = False)→ None
mergeTranslatedPage is similar to merge_page, but the stream to be merged is translated by applying a
transformation matrix.

Parameters

• page2 (PageObject) – the page to be merged into this one. Should be an instance of
PageObject.

• tx (float) – The translation on X axis

• ty (float) – The translation on Y axis

• expand (bool) – Whether the page should be expanded to fit the dimensions of the page
to be merged.

Deprecated since version 1.28.0: Use add_transformation() and merge_page() instead.

merge_page(page2: PageObject, expand: bool = False)→ None
Merge the content streams of two pages into one.

Resource references (i.e. fonts) are maintained from both pages. The mediabox/cropbox/etc of this page
are not altered. The parameter page’s content stream will be added to the end of this page’s content stream,
meaning that it will be drawn after, or “on top” of this page.

Parameters

• page2 – The page to be merged into this one. Should be an instance of PageObject.

• expand – If true, the current page dimensions will be expanded to accommodate the di-
mensions of the page to be merged.

original_page: PageObject

rotate(angle: int)→ PageObject
Rotate a page clockwise by increments of 90 degrees.

Parameters
angle – Angle to rotate the page. Must be an increment of 90 deg.

94 Chapter 23. The PageObject Class

PyPDF2

rotateClockwise(angle: int)→ PageObject
Deprecated since version 1.28.0: Use rotate_clockwise() instead.

rotateCounterClockwise(angle: int)→ PageObject
Deprecated since version 1.28.0: Use rotate_clockwise() with a negative argument instead.

rotate_clockwise(angle: int)→ PageObject

property rotation: int

The VISUAL rotation of the page.

This number has to be a multiple of 90 degrees: 0,90,180,270 This property does not affect “/Contents”

scale(sx: float, sy: float)→ None
Scale a page by the given factors by applying a transformation matrix to its content and updating the page
size.

This updates the mediabox, the cropbox, and the contents of the page.

Parameters

• sx – The scaling factor on horizontal axis.

• sy – The scaling factor on vertical axis.

scaleBy(factor: float)→ None
Deprecated since version 1.28.0: Use scale_by() instead.

scaleTo(width: float, height: float)→ None
Deprecated since version 1.28.0: Use scale_to() instead.

scale_by(factor: float)→ None
Scale a page by the given factor by applying a transformation matrix to its content and updating the page
size.

Parameters
factor – The scaling factor (for both X and Y axis).

scale_to(width: float, height: float)→ None
Scale a page to the specified dimensions by applying a transformation matrix to its content and updating
the page size.

Parameters

• width – The new width.

• height – The new height.

transfer_rotation_to_content()→ None
Apply the rotation of the page to the content and the media/crop/. . . boxes.

It’s recommended to apply this function before page merging.

property trimBox: RectangleObject

Deprecated since version 1.28.0.

Use trimbox instead.

property trimbox

A RectangleObject, expressed in default user space units, defining the intended dimensions of the fin-
ished page after trimming.

95

PyPDF2

property user_unit: float

A read-only positive number giving the size of user space units.

It is in multiples of 1/72 inch. Hence a value of 1 means a user space unit is 1/72 inch, and a value of 3
means that a user space unit is 3/72 inch.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

96 Chapter 23. The PageObject Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYFOUR

THE TRANSFORMATION CLASS

class PyPDF2.Transformation(ctm: Tuple[float, float, float, float, float, float] = (1, 0, 0, 1, 0, 0))
Bases: object

Represent a 2D transformation.

The transformation between two coordinate systems is represented by a 3-by-3 transformation matrix matrix with
the following form:

a b 0
c d 0
e f 1

Because a transformation matrix has only six elements that can be changed, it is usually specified in PDF as the
six-element array [a b c d e f].

Coordinate transformations are expressed as matrix multiplications:

a b 0
[x y 1] = [x y 1] × c d 0

e f 1

Example

>>> from PyPDF2 import Transformation
>>> op = Transformation().scale(sx=2, sy=3).translate(tx=10, ty=20)
>>> page.add_transformation(op)

apply_on(pt: Union[Tuple[Decimal, Decimal], Tuple[float, float], List[float]])→ Union[Tuple[float, float],
List[float]]

Apply the transformation matrix on the given point.

Parameters
pt – A tuple or list representing the point in the form (x, y)

Returns
A tuple or list representing the transformed point in the form (x’, y’)

static compress(matrix: Tuple[Tuple[float, float, float], Tuple[float, float, float], Tuple[float, float, float]])
→ Tuple[float, float, float, float, float, float]

Compresses the transformation matrix into a tuple of (a, b, c, d, e, f).

Parameters
matrix – The transformation matrix as a tuple of tuples.

97

PyPDF2

Returns
A tuple representing the transformation matrix as (a, b, c, d, e, f)

property matrix: Tuple[Tuple[float, float, float], Tuple[float, float, float],
Tuple[float, float, float]]

Return the transformation matrix as a tuple of tuples in the form: ((a, b, 0), (c, d, 0), (e, f, 1))

rotate(rotation: float)→ Transformation
Rotate the contents of a page.

Parameters
rotation – The angle of rotation in degrees.

Returns
A new Transformation instance with the rotated matrix.

scale(sx: Optional[float] = None, sy: Optional[float] = None)→ Transformation
Scale the contents of a page towards the origin of the coordinate system.

Typically, that is the lower-left corner of the page. That can be changed by translating the contents / the
page boxes.

Parameters

• sx – The scale factor along the x-axis.

• sy – The scale factor along the y-axis.

Returns
A new Transformation instance with the scaled matrix.

translate(tx: float = 0, ty: float = 0)→ Transformation
Translate the contents of a page.

Parameters

• tx – The translation along the x-axis.

• ty – The translation along the y-axis.

Returns
A new Transformation instance

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

98 Chapter 24. The Transformation Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYFIVE

THE DOCUMENTINFORMATION CLASS

class PyPDF2.DocumentInformation

Bases: DictionaryObject

A class representing the basic document metadata provided in a PDF File. This class is accessible through
PdfReader.metadata.

All text properties of the document metadata have two properties, eg. author and author_raw. The non-raw prop-
erty will always return a TextStringObject, making it ideal for a case where the metadata is being displayed.
The raw property can sometimes return a ByteStringObject, if PyPDF2 was unable to decode the string’s text
encoding; this requires additional safety in the caller and therefore is not as commonly accessed.

property author: Optional[str]

Read-only property accessing the document’s author.

Returns a unicode string (TextStringObject) or None if the author is not specified.

property author_raw: Optional[str]

The “raw” version of author; can return a ByteStringObject.

property creation_date: Optional[datetime]

Read-only property accessing the document’s creation date.

property creation_date_raw: Optional[str]

The “raw” version of creation date; can return a ByteStringObject.

Typically in the format D:YYYYMMDDhhmmss[+-]hh’mm where the suffix is the offset from UTC.

property creator: Optional[str]

Read-only property accessing the document’s creator.

If the document was converted to PDF from another format, this is the name of the application (e.g.
OpenOffice) that created the original document from which it was converted. Returns a unicode string
(TextStringObject) or None if the creator is not specified.

property creator_raw: Optional[str]

The “raw” version of creator; can return a ByteStringObject.

getText(key: str)→ Optional[str]
The text value of the specified key or None.

Deprecated since version 1.28.0: Use the attributes (e.g. title / author).

property modification_date: Optional[datetime]

Read-only property accessing the document’s modification date.

The date and time the document was most recently modified.

99

PyPDF2

property modification_date_raw: Optional[str]

The “raw” version of modification date; can return a ByteStringObject.

Typically in the format D:YYYYMMDDhhmmss[+-]hh’mm where the suffix is the offset from UTC.

property producer: Optional[str]

Read-only property accessing the document’s producer.

If the document was converted to PDF from another format, this is the name of the application (for example,
OSX Quartz) that converted it to PDF. Returns a unicode string (TextStringObject) or None if the
producer is not specified.

property producer_raw: Optional[str]

The “raw” version of producer; can return a ByteStringObject.

property subject: Optional[str]

Read-only property accessing the document’s subject.

Returns a unicode string (TextStringObject) or None if the subject is not specified.

property subject_raw: Optional[str]

The “raw” version of subject; can return a ByteStringObject.

property title: Optional[str]

Read-only property accessing the document’s title.

Returns a unicode string (TextStringObject) or None if the title is not specified.

property title_raw: Optional[str]

The “raw” version of title; can return a ByteStringObject.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

100 Chapter 25. The DocumentInformation Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYSIX

THE XMPINFORMATION CLASS

class PyPDF2.xmp.XmpInformation(stream: ContentStream)

Bases: PdfObject

An object that represents Adobe XMP metadata. Usually accessed by xmp_metadata()

Raises
PdfReadError – if XML is invalid

property custom_properties: Dict[Any, Any]

Retrieve custom metadata properties defined in the undocumented pdfx metadata schema.

Returns
a dictionary of key/value items for custom metadata properties.

property dc_contributor: Optional[List[str]]

Contributors to the resource (other than the authors). An unsorted array of names.

property dc_coverage: Optional[Any]

Text describing the extent or scope of the resource.

property dc_creator: Optional[List[Any]]

A sorted array of names of the authors of the resource, listed in order of precedence.

property dc_date: Optional[List[Any]]

A sorted array of dates (datetime.datetime instances) of significance to the resource. The dates and times
are in UTC.

property dc_description: Optional[Dict[Any, Any]]

A language-keyed dictionary of textual descriptions of the content of the resource.

property dc_format: Optional[Any]

The mime-type of the resource.

property dc_identifier: Optional[Any]

Unique identifier of the resource.

property dc_language: Optional[List[str]]

An unordered array specifying the languages used in the resource.

property dc_publisher: Optional[List[str]]

An unordered array of publisher names.

property dc_relation: Optional[List[str]]

An unordered array of text descriptions of relationships to other documents.

101

PyPDF2

property dc_rights: Optional[Dict[Any, Any]]

A language-keyed dictionary of textual descriptions of the rights the user has to this resource.

property dc_source: Optional[Any]

Unique identifier of the work from which this resource was derived.

property dc_subject: Optional[List[str]]

An unordered array of descriptive phrases or keywrods that specify the topic of the content of the resource.

property dc_title: Optional[Dict[Any, Any]]

A language-keyed dictionary of the title of the resource.

property dc_type: Optional[List[str]]

An unordered array of textual descriptions of the document type.

getElement(aboutUri: str, namespace: str, name: str)→ Iterator[Any]
Deprecated since version 1.28.0: Use get_element() instead.

getNodesInNamespace(aboutUri: str, namespace: str)→ Iterator[Any]
Deprecated since version 1.28.0: Use get_nodes_in_namespace() instead.

get_element(about_uri: str, namespace: str, name: str)→ Iterator[Any]

get_nodes_in_namespace(about_uri: str, namespace: str)→ Iterator[Any]

property pdf_keywords: Optional[Any]

An unformatted text string representing document keywords.

property pdf_pdfversion: Optional[Any]

The PDF file version, for example 1.0, 1.3.

property pdf_producer: Optional[Any]

The name of the tool that created the PDF document.

property rdfRoot: Element

writeToStream(stream: IO, encryption_key: Union[None, str, bytes])→ None
Deprecated since version 1.28.0: Use write_to_stream() instead.

write_to_stream(stream: IO, encryption_key: Union[None, str, bytes])→ None

property xmp_createDate: datetime

property xmp_create_date: Optional[Any]

The date and time the resource was originally created. The date and time are returned as a UTC date-
time.datetime object.

property xmp_creatorTool: str

property xmp_creator_tool: Optional[Any]

The name of the first known tool used to create the resource.

property xmp_metadataDate: datetime

property xmp_metadata_date: Optional[Any]

The date and time that any metadata for this resource was last changed.

The date and time are returned as a UTC datetime.datetime object.

102 Chapter 26. The XmpInformation Class

PyPDF2

property xmp_modifyDate: datetime

property xmp_modify_date: Optional[Any]

The date and time the resource was last modified. The date and time are returned as a UTC date-
time.datetime object.

property xmpmm_documentId: str

property xmpmm_document_id: Optional[Any]

The common identifier for all versions and renditions of this resource.

property xmpmm_instanceId: str

property xmpmm_instance_id: Optional[Any]

An identifier for a specific incarnation of a document, updated each time a file is saved.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

103

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

104 Chapter 26. The XmpInformation Class

CHAPTER

TWENTYSEVEN

THE DESTINATION CLASS

class PyPDF2.generic.Destination(title: str, page: Union[NumberObject, IndirectObject, NullObject,
DictionaryObject], fit: Fit)

Bases: TreeObject

A class representing a destination within a PDF file. See section 8.2.1 of the PDF 1.6 reference.

Parameters

• title (str) – Title of this destination.

• page (IndirectObject) – Reference to the page of this destination. Should be an instance
of IndirectObject.

• fit (Fit) – How the destination is displayed.

Raises
PdfReadError – If destination type is invalid.

property bottom: Optional[FloatObject]

Read-only property accessing the bottom vertical coordinate.

childs: List[Any] = []

property color: Optional[ArrayObject]

Read-only property accessing the color in (R, G, B) with values 0.0-1.0

property dest_array: ArrayObject

property font_format: Optional[OutlineFontFlag]

Read-only property accessing the font type. 1=italic, 2=bold, 3=both

getDestArray()→ ArrayObject
Deprecated since version 1.28.3: Use dest_array instead.

property left: Optional[FloatObject]

Read-only property accessing the left horizontal coordinate.

node: Optional[DictionaryObject] = None

property outline_count: Optional[int]

Read-only property accessing the outline count. positive = expanded negative = collapsed absolute value
= number of visible descendents at all levels

property page: Optional[int]

Read-only property accessing the destination page number.

105

PyPDF2

property right: Optional[FloatObject]

Read-only property accessing the right horizontal coordinate.

property title: Optional[str]

Read-only property accessing the destination title.

property top: Optional[FloatObject]

Read-only property accessing the top vertical coordinate.

property typ: Optional[str]

Read-only property accessing the destination type.

write_to_stream(stream: IO, encryption_key: Union[None, str, bytes])→ None

property zoom: Optional[int]

Read-only property accessing the zoom factor.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

106 Chapter 27. The Destination Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYEIGHT

THE RECTANGLEOBJECT CLASS

class PyPDF2.generic.RectangleObject(arr: Union[RectangleObject, Tuple[float, float, float, float]])
Bases: ArrayObject

This class is used to represent page boxes in PyPDF2. These boxes include:

• artbox

• bleedbox

• cropbox

• mediabox

• trimbox

property bottom: FloatObject

ensureIsNumber(value: Any)→ Union[FloatObject, NumberObject]

getHeight()→ Decimal

getLowerLeft()→ Tuple[Decimal, Decimal]

getLowerLeft_x()→ FloatObject

getLowerLeft_y()→ FloatObject

getLowerRight()→ Tuple[Decimal, Decimal]

getLowerRight_x()→ FloatObject

getLowerRight_y()→ FloatObject

getUpperLeft()→ Tuple[Decimal, Decimal]

getUpperLeft_x()→ FloatObject

getUpperLeft_y()→ FloatObject

getUpperRight()→ Tuple[Decimal, Decimal]

getUpperRight_x()→ FloatObject

getUpperRight_y()→ FloatObject

getWidth()→ Decimal

property height: Decimal

107

PyPDF2

property left: FloatObject

property lowerLeft: Tuple[Decimal, Decimal]

property lowerRight: Tuple[Decimal, Decimal]

property lower_left: Tuple[Decimal, Decimal]

Property to read and modify the lower left coordinate of this box in (x,y) form.

property lower_right: Tuple[Decimal, Decimal]

Property to read and modify the lower right coordinate of this box in (x,y) form.

property right: FloatObject

scale(sx: float, sy: float)→ RectangleObject

setLowerLeft(value: Tuple[float, float])→ None

setLowerRight(value: Tuple[float, float])→ None

setUpperLeft(value: Tuple[float, float])→ None

setUpperRight(value: Tuple[float, float])→ None

property top: FloatObject

property upperLeft: Tuple[Decimal, Decimal]

property upperRight: Tuple[Decimal, Decimal]

property upper_left: Tuple[Decimal, Decimal]

Property to read and modify the upper left coordinate of this box in (x,y) form.

property upper_right: Tuple[Decimal, Decimal]

Property to read and modify the upper right coordinate of this box in (x,y) form.

property width: Decimal

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

108 Chapter 28. The RectangleObject Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

TWENTYNINE

THE FIELD CLASS

class PyPDF2.generic.Field(data: Dict[str, Any])
Bases: TreeObject

A class representing a field dictionary.

This class is accessed through get_fields()

property additionalActions: Optional[DictionaryObject]

Deprecated since version 1.28.3.

Use additional_actions instead.

property additional_actions: Optional[DictionaryObject]

Read-only property accessing the additional actions dictionary. This dictionary defines the field’s behavior
in response to trigger events. See Section 8.5.2 of the PDF 1.7 reference.

property altName: Optional[str]

Deprecated since version 1.28.3.

Use alternate_name instead.

property alternate_name: Optional[str]

Read-only property accessing the alternate name of this field.

property defaultValue: Optional[Any]

Deprecated since version 1.28.3.

Use default_value instead.

property default_value: Optional[Any]

Read-only property accessing the default value of this field.

property fieldType: Optional[NameObject]

Deprecated since version 1.28.3.

Use field_type instead.

property field_type: Optional[NameObject]

Read-only property accessing the type of this field.

property flags: Optional[int]

Read-only property accessing the field flags, specifying various characteristics of the field (see Table 8.70
of the PDF 1.7 reference).

property kids: Optional[ArrayObject]

Read-only property accessing the kids of this field.

109

PyPDF2

property mappingName: Optional[str]

Deprecated since version 1.28.3.

Use mapping_name instead.

property mapping_name: Optional[str]

Read-only property accessing the mapping name of this field. This name is used by PyPDF2 as a key in
the dictionary returned by get_fields()

property name: Optional[str]

Read-only property accessing the name of this field.

property parent: Optional[DictionaryObject]

Read-only property accessing the parent of this field.

property value: Optional[Any]

Read-only property accessing the value of this field. Format varies based on field type.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

110 Chapter 29. The Field Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

THIRTY

THE PAGERANGE CLASS

class PyPDF2.PageRange(arg: Union[slice, PageRange, str])
Bases: object

A slice-like representation of a range of page indices.

For example, page numbers, only starting at zero.

The syntax is like what you would put between brackets []. The slice is one of the few Python types that can’t
be subclassed, but this class converts to and from slices, and allows similar use.

• PageRange(str) parses a string representing a page range.

• PageRange(slice) directly “imports” a slice.

• to_slice() gives the equivalent slice.

• str() and repr() allow printing.

• indices(n) is like slice.indices(n).

indices(n: int)→ Tuple[int, int, int]
n is the length of the list of pages to choose from.

Returns arguments for range(). See help(slice.indices).

to_slice()→ slice
Return the slice equivalent of this page range.

static valid(input: Any)→ bool
True if input is a valid initializer for a PageRange.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

111

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

112 Chapter 30. The PageRange Class

CHAPTER

THIRTYONE

THE ANNOTATIONBUILDER CLASS

class PyPDF2.generic.AnnotationBuilder

Bases: object

The AnnotationBuilder creates dictionaries representing PDF annotations.

Those dictionaries can be modified before they are added to a PdfWriter instance via writer.add_annotation.

See adding PDF annotations for it’s usage combined with PdfWriter.

static free_text(text: str, rect: Union[RectangleObject, Tuple[float, float, float, float]], font: str =
'Helvetica', bold: bool = False, italic: bool = False, font_size: str = '14pt', font_color:
str = '000000', border_color: str = '000000', background_color: str = 'ffffff')→
DictionaryObject

Add text in a rectangle to a page.

Parameters

• text (str) – Text to be added

• rect (RectangleObject) – or array of four integers specifying the clickable rectangular
area [xLL, yLL, xUR, yUR]

• font (str) – Name of the Font, e.g. ‘Helvetica’

• bold (bool) – Print the text in bold

• italic (bool) – Print the text in italic

• font_size (str) – How big the text will be, e.g. ‘14pt’

• font_color (str) – Hex-string for the color

• border_color (str) – Hex-string for the border color

• background_color (str) – Hex-string for the background of the annotation

static line(p1: Tuple[float, float], p2: Tuple[float, float], rect: Union[RectangleObject, Tuple[float, float,
float, float]], text: str = '', title_bar: str = '')→ DictionaryObject

Draw a line on the PDF.

Parameters

• p1 (Tuple[float, float]) – First point

• p2 (Tuple[float, float]) – Second point

• rect (RectangleObject) – or array of four integers specifying the clickable rectangular
area [xLL, yLL, xUR, yUR]

• text (str) – Text to be displayed as the line annotation

113

../user/adding-pdf-annotations.html

PyPDF2

• title_bar (str) – Text to be displayed in the title bar of the annotation; by convention
this is the name of the author

static link(rect: ~typing.Union[~PyPDF2.generic._rectangle.RectangleObject, ~typing.Tuple[float, float,
float, float]], border: ~typing.Optional[~PyPDF2.generic._data_structures.ArrayObject] =
None, url: ~typing.Optional[str] = None, target_page_index: ~typing.Optional[int] = None,
fit: ~PyPDF2.generic._fit.Fit = <PyPDF2.generic._fit.Fit object>)→ DictionaryObject

Add a link to the document.

The link can either be an external link or an internal link.

An external link requires the URL parameter. An internal link requires the target_page_index, fit, and fit
args.

Parameters

• rect (RectangleObject) – or array of four integers specifying the clickable rectangular
area [xLL, yLL, xUR, yUR]

• border – if provided, an array describing border-drawing properties. See the PDF spec
for details. No border will be drawn if this argument is omitted. - horizontal corner radius,
- vertical corner radius, and - border width - Optionally: Dash

• url (str) – Link to a website (if you want to make an external link)

• target_page_index (int) – index of the page to which the link should go (if you want
to make an internal link)

• fit (Fit) – Page fit or ‘zoom’ option.

static rectangle(rect: Union[RectangleObject, Tuple[float, float, float, float]], interiour_color:
Optional[str] = None)→ DictionaryObject

Draw a rectangle on the PDF.

Parameters
rect (RectangleObject) – or array of four integers specifying the clickable rectangular
area [xLL, yLL, xUR, yUR]

static text(rect: Union[RectangleObject, Tuple[float, float, float, float]], text: str, open: bool = False,
flags: int = 0)→ DictionaryObject

Add text annotation.

Parameters

• rect (Tuple[int, int, int, int]) – or array of four integers specifying the clickable
rectangular area [xLL, yLL, xUR, yUR]

• open (bool) –

• flags (int) –

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

114 Chapter 31. The AnnotationBuilder Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

THIRTYTWO

THE FIT CLASS

class PyPDF2.generic.Fit(fit_type: str, fit_args: Tuple[Union[None, float, Any], ...] = ())
Bases: object

classmethod fit()→ Fit
Display the page designated by page, with its contents magnified just enough to fit the entire page within
the window both horizontally and vertically. If the required horizontal and vertical magnification factors
are different, use the smaller of the two, centering the page within the window in the other dimension.

classmethod fit_box()→ Fit
Display the page designated by page , with its contents magnified just enough to fit its bounding box entirely
within the window both horizontally and vertically. If the required horizontal and vertical magnification
factors are different, use the smaller of the two, centering the bounding box within the window in the other
dimension.

classmethod fit_box_horizontally(top: Optional[float] = None)→ Fit
Display the page designated by page , with the vertical coordinate top positioned at the top edge of the
window and the contents of the page magnified just enough to fit the entire width of its bounding box
within the window.

A null value for top specifies that the current value of that parameter is to be retained unchanged.

classmethod fit_box_vertically(left: Optional[float] = None)→ Fit
Display the page designated by page , with the horizontal coordinate left positioned at the left edge of the
window and the contents of the page magnified just enough to fit the entire height of its bounding box within
the window.

A null value for left specifies that the current value of that parameter is to be retained unchanged.

classmethod fit_horizontally(top: Optional[float] = None)→ Fit
Display the page designated by page , with the vertical coordinate top positioned at the top edge of the
window and the contents of the page magnified just enough to fit the entire width of the page within the
window.

A null value for top specifies that the current value of that parameter is to be retained unchanged.

classmethod fit_rectangle(left: Optional[float] = None, bottom: Optional[float] = None, right:
Optional[float] = None, top: Optional[float] = None)→ Fit

Display the page designated by page , with its contents magnified just enough to fit the rectangle specified
by the coordinates left , bottom , right , and top entirely within the window both horizontally and vertically.

If the required horizontal and vertical magnification factors are different, use the smaller of the two, cen-
tering the rectangle within the window in the other dimension.

A null value for any of the parameters may result in unpredictable behavior.

115

PyPDF2

classmethod fit_vertically(left: Optional[float] = None)→ Fit

classmethod xyz(left: Optional[float] = None, top: Optional[float] = None, zoom: Optional[float] =
None)→ Fit

Display the page designated by page, with the coordinates (left , top) positioned at the upper-left corner
of the window and the contents of the page magnified by the factor zoom.

A null value for any of the parameters left, top, or zoom specifies that the current value of that parameter
is to be retained unchanged.

A zoom value of 0 has the same meaning as a null value.

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

116 Chapter 32. The Fit Class

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html
https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

CHAPTER

THIRTYTHREE

THE PAPERSIZE CLASS

class PyPDF2.PaperSize

Bases: object

(width, height) of the paper in portrait mode in pixels at 72 ppi.

A0 = Dimensions(width=2384, height=3370)

A1 = Dimensions(width=1684, height=2384)

A2 = Dimensions(width=1191, height=1684)

A3 = Dimensions(width=842, height=1191)

A4 = Dimensions(width=595, height=842)

A5 = Dimensions(width=420, height=595)

A6 = Dimensions(width=298, height=420)

A7 = Dimensions(width=210, height=298)

A8 = Dimensions(width=147, height=210)

C4 = Dimensions(width=649, height=918)

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

117

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

118 Chapter 33. The PaperSize Class

CHAPTER

THIRTYFOUR

DEVELOPER INTRO

PyPDF2 is a library and hence its users are developers. This document is not for the users, but for people who want to
work on PyPDF2 itself.

34.1 Installing Requirements

pip install -r requirements/dev.txt

34.2 Running Tests

See testing PyPDF2 with pytest

34.3 The sample-files git submodule

The reason for having the submodule sample-files is that we want to keep the size of the PyPDF2 repository small
while we also want to have an extensive test suite. Those two goals contradict each other.

The resources folder should contain a select set of core examples that cover most cases we typically want to test for.
The sample-files might cover a lot more edge cases, the behavior we get when file sizes get bigger, different PDF
producers.

In order to get the sample-files folder, you need to execute:

git submodule update --init

34.4 Tools: git and pre-commit

Git is a command line application for version control. If you don’t know it, you can play ohmygit to learn it.

GitHub is the service where the PyPDF2 project is hosted. While git is free and open source, GitHub is a paid service
by Microsoft - but for free in lot of cases.

pre-commit is a command line application that uses git hooks to automatically execute code. This allows you to avoid
style issues and other code quality issues. After you entered pre-commit install once in your local copy of PyPDF2,
it will automatically be executed when you git commit.

119

testing.md
https://ohmygit.org/
https://pypi.org/project/pre-commit/

PyPDF2

34.5 Commit Messages

Having a clean commit message helps people to quickly understand what the commit was about, without actually
looking at the changes. The first line of the commit message is used to auto-generate the CHANGELOG. For this
reason, the format should be:

PREFIX: DESCRIPTION

BODY

The PREFIX can be:

• BUG: A bug was fixed. Likely there is one or multiple issues. Then write in the BODY: Closes #123 where 123
is the issue number on GitHub. It would be absolutely amazing if you could write a regression test in those cases.
That is a test that would fail without the fix.

• ENH: A new feature! Describe in the body what it can be used for.

• DEP: A deprecation - either marking something as “this is going to be removed” or actually removing it.

• PI: A performance improvement. This could also be a reduction in the file size of PDF files generated by PyPDF2.

• ROB: A robustness change. Dealing better with broken PDF files.

• DOC: A documentation change.

• TST: Adding / adjusting tests.

• DEV: Developer experience improvements - e.g. pre-commit or setting up CI

• MAINT: Quite a lot of different stuff. Performance improvements are for sure the most interesting changes in here.
Refactorings as well.

• STY: A style change. Something that makes PyPDF2 code more consistent. Typically a small change.

34.6 Benchmarks

We need to keep an eye on performance and thus we have a few benchmarks.

See py-pdf.github.io/PyPDF2/dev/bench

120 Chapter 34. Developer Intro

https://github.com/py-pdf/PyPDF2/blob/main/make_changelog.py
https://py-pdf.github.io/PyPDF2/dev/bench/

CHAPTER

THIRTYFIVE

THE PDF FORMAT

It’s recommended to look in the PDF specification for details and clarifications. This is only intended to give a very
rough overview of the format.

35.1 Overall Structure

A PDF consists of:

1. Header: Contains the version of the PDF, e.g. %PDF-1.7

2. Body: Contains a sequence of indirect objects

3. Cross-reference table (xref): Contains a list of the indirect objects in the body

4. Trailer

35.2 The xref table

A cross-reference table (xref) is a table of the indirect objects in the body. It allows quick access to those objects by
pointing to their location in the file.

It looks like this:

xref 42 5
0000001000 65535 f
0000001234 00000 n
0000001987 00000 n
0000011987 00000 n
0000031987 00000 n

Let’s go through it step-by-step:

• xref is just a keyword that specifies the start of the xref table.

• 42 is the numerical ID of the first object in this xref section; 5 is the number of entries in the xref table.

• Now every object has 3 entries nnnnnnnnnn ggggg n: The 10-digit byte offset, a 5-digit generation number,
and a literal keyword which is either n or f.

– nnnnnnnnnn is the byte offset of the object. It tells the reader where the object is in the file.

– ggggg is the generation number. It tells the reader how old the object is.

– n means that the object is a normal in-use object, f means that the object is a free object.

121

PyPDF2

∗ The first free object always has a generation number of 65535. It forms the head of a linked-list of all
free objects.

∗ The generation number of a normal object is always 0. The generation number allows the PDF format
to contain multiple versions of the same object. This is a version history mechanism.

35.3 The body

The body is a sequence of indirect objects:

counter generationnumber << the_object >> endobj

• counter (integer) is a unique identifier for the object.

• generationnumber (integer) is the generation number of the object.

• the_object is the object itself. It can be empty. Starts with /Keyword to specify which kind of object it is.

• endobj marks the end of the object.

A concrete example can be found in test_reader.py::test_get_images_raw:

1 0 obj << /Count 1 /Kids [4 0 R] /Type /Pages >> endobj
2 0 obj << >> endobj
3 0 obj << >> endobj
4 0 obj << /Contents 3 0 R /CropBox [0.0 0.0 2550.0 3508.0]
/MediaBox [0.0 0.0 2550.0 3508.0] /Parent 1 0 R
/Resources << /Font << >> >>
/Rotate 0 /Type /Page >> endobj
5 0 obj << /Pages 1 0 R /Type /Catalog >> endobj

35.4 The trailer

The trailer looks like this:

trailer << /Root 5 0 R
/Size 6

>>
startxref 1234
%%EOF

Let’s go through it:

• trailer << indicates that the trailer dictionary starts. It ends with >>.

• startxref is a keyword followed by the byte-location of the xref keyword. As the trailer is always at the
bottom of the file, this allows readers to quickly find the xref table.

• %%EOF is the end-of-file marker.

The trailer dictionary is a key-value list. The keys are specified in Table 3.13 of the PDF Reference 1.7, e.g. /Root and
/Size (both are required).

• /Root (dictionary) contains the document catalog.

– The 5 is the object number of the catalog dictionary

122 Chapter 35. The PDF Format

PyPDF2

– 0 is the generation number of the catalog dictionary

– R is the keyword that indicates that the object is a reference to the catalog dictionary.

• /Size (integer) contains the total number of entries in the files xref table.

35.5 Reading PDF files

Most PDF files are compressed. If you want to read them, first uncompress them:

pdftk crazyones.pdf output crazyones-uncomp.pdf uncompress

Then rename crazyones-uncomp.pdf to crazyones-uncomp.txt and open it in our favorite IDE / text editor.

35.5. Reading PDF files 123

PyPDF2

124 Chapter 35. The PDF Format

CHAPTER

THIRTYSIX

CMAPS

Looking at the cmap of “crazyones”:

pdftk crazyones.pdf output crazyones-uncomp.pdf uncompress

You can see this:

begincmap
/CMapName /T1Encoding-UTF16 def
/CMapType 2 def
/CIDSystemInfo <<
/Registry (Adobe)
/Ordering (UCS)
/Supplement 0

>> def
1 begincodespacerange
<00> <FF>
endcodespacerange
1 beginbfchar
<1B> <FB00>
endbfchar
endcmap
CMapName currentdict /CMap defineresource pop

36.1 codespacerange

A codespacerange maps a complete sequence of bytes to a range of unicode glyphs. It defines a starting point:

1 beginbfchar
<1B> <FB00>

That means that 1B (Hex for 27) maps to the unicode character FB00 - the ligature ff (two lowercase f’s).

The two numbers in begincodespacerange mean that it starts with an offset of 0 (hence from 1B FB00) upt to an
offset of FF (dec: 255), hence 1B+FF = 282 FBFF.

Within the text stream, there is

(The)-342(mis\034ts.)

\034 is octal for 28 decimal.

125

https://unicode-table.com/en/FB00/
https://www.compart.com/de/unicode/U+FBFF

PyPDF2

126 Chapter 36. CMaps

CHAPTER

THIRTYSEVEN

THE DEPRECATION PROCESS

PyPDF2 strives to be an excellent library for its current users and for new ones. We are careful with introducing
potentially breaking changes, but we will do them if they provide value for the community on the long run.

We hope and think that deprecations will not happen soon again. If they do, users can rely on the following procedure.

37.1 Semantic Versioning

PyPDF2 uses semantic versioning. If you want to avoid breaking changes, please use dependency pinning (also known
as version pinning). In Python, this is done by specifying the exact version you want to use in a requirements.txt
file. A tool that can support you is pip-compile from pip-tools.

If you are using Poetry it is done with the poetry.lock file.

37.2 How PyPDF2 deprecates features

Assume the current version of PyPDF2 is x.y.z. After a discussion (e.g. via GitHub issues) we decided to remove a
class / function / method. This is how we do it:

1. x.y.(z+1): Add a DeprecationWarning. If there is a replacement, the replacement is also introduced and the
warning informs about the change and when it will happen. The docs let users know about the deprecation and
when it will happen and the new function. The CHANGELOG informs about it.

2. (x+1).0.0: Remove / change the code in the breaking way by replacing DeprecationWarnings by Deprecation-
Errors. We do this to help people who didn’t look at the warnings before. The CHANGELOG informs about
it.

3. (x+2).0.0: The DeprecationErrors are removed.

This means the users have 3 warnings in the CHANGELOG, a DeprecationWarning until the next major release and a
DeprecationError until the major release after that.

Please note that adding warnings can be a breaking change for some users; most likely just in the CI. This means it
needs to be properly documented.

127

https://semver.org/
https://pypi.org/project/pip-tools/
https://pypi.org/project/poetry/

PyPDF2

128 Chapter 37. The Deprecation Process

CHAPTER

THIRTYEIGHT

TESTING

PyPDF2 uses pytest for testing.

38.1 De-selecting groups of tests

PyPDF2 makes use of the following pytest markers:

• slow: Tests that require more than 5 seconds

• samples: Tests that require the the sample-files git submodule to be initialized. As of October 2022, this is
about 25 MB.

• external: Tests that download PDF documents. They are stored locally and thus only need to be downloaded
once. As of October 2022, this is about 200 MB.

You can disable them by pytest -m "not external" or pytest -m "not samples". You can even disable all
of them: pytest -m "not external" -m "not samples" -m "not slow".

Please note that this reduces test coverage. The CI will always test all files.

38.2 Creating a Coverage Report

If you want to get a coverage report that considers the Python version specific code, you can run tox.

As a prerequisite, we recommend using pyenv so that you can install the different Python versions:

pyenv install pypy3.8-7.3.7
pyenv install 3.6.15
pyenv install 3.7.12
pyenv install 3.8.12
pyenv install 3.9.10
pyenv install 3.10.2

Then you can execute tox which will create a coverage report in HTML form in the end. The execution takes about 30
minutes.

129

https://docs.pytest.org/en/7.1.x/
https://github.com/py-pdf/sample-files
https://tox.wiki/en/latest/
https://github.com/pyenv/pyenv

PyPDF2

130 Chapter 38. Testing

CHAPTER

THIRTYNINE

CHANGELOG

39.1 Version 3.0.0, 2022-12-22

39.1.1 BREAKING CHANGES

• Deprecate features with PyPDF2==3.0.0 (#1489)

• Refactor Fit / Zoom parameters (#1437)

39.1.2 New Features (ENH)

• Add Cloning (#1371)

• Allow int for indirect_reference in PdfWriter.get_object (#1490)

39.1.3 Documentation (DOC)

• How to read PDFs from S3 (#1509)

• Make MyST parse all links as simple hyperlinks (#1506)

• Changed ‘latest’ for ‘stable’ generated docs (#1495)

• Adjust deprecation procedure (#1487)

39.1.4 Maintenance (MAINT)

• Use typing.IO for file streams (#1498)

Full Changelog

131

https://github.com/py-pdf/PyPDF2/compare/2.12.1...3.0.0

PyPDF2

39.2 Version 2.12.1, 2022-12-10

39.2.1 Documentation (DOC)

• Deduplicate extract_text docstring (#1485)

• How to cite PyPDF2 (#1476)

39.2.2 Maintenance (MAINT)

Consistency changes:

• indirect_ref/ido indirect_reference, dest page_destination (#1467)

• owner_pwd/user_pwd owner_password/user_password (#1483)

• position page_number in Merger.merge (#1482)

• indirect_ref indirect_reference (#1484)

Full Changelog

39.3 Version 2.12.0, 2022-12-10

39.3.1 New Features (ENH)

• Add support to extract gray scale images (#1460)

• Add ‘threads’ property to PdfWriter (#1458)

• Add ‘open_destination’ property to PdfWriter (#1431)

• Make PdfReader.get_object accept integer arguments (#1459)

39.3.2 Bug Fixes (BUG)

• Scale PDF annotations (#1479)

39.3.3 Robustness (ROB)

• Padding issue with AES encryption (#1469)

• Accept empty object as null objects (#1477)

132 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.12.0...2.12.1

PyPDF2

39.3.4 Documentation (DOC)

• Add module documentation the PaperSize class (#1447)

39.3.5 Maintenance (MAINT)

• Use ‘page_number’ instead of ‘pagenum’ (#1365)

• Add List of pages to PageRangeSpec (#1456)

39.3.6 Testing (TST)

• Cleanup temporary files (#1454)

• Mark test_tounicode_is_identity as external (#1449)

• Use Ubuntu 20.04 for running CI test suite (#1452)

Full Changelog

39.4 Version 2.11.2, 2022-11-20

39.4.1 New Features (ENH)

• Add remove_from_tree (#1432)

• Add AnnotationBuilder.rectangle (#1388)

39.4.2 Bug Fixes (BUG)

• JavaScript executed twice (#1439)

• ToUnicode stores /Identity-H instead of stream (#1433)

• Declare Pillow as optional dependency (#1392)

39.4.3 Developer Experience (DEV)

• Link ‘Full Changelog’ automatically

• Modify read_string_from_stream to a benchmark (#1415)

• Improve error reporting of read_object (#1412)

• Test Python 3.11 (#1404)

• Extend Flake8 ignore list (#1410)

• Use correct pytest markers (#1407)

• Move project configuration to pyproject.toml (#1382)

Full Changelog

39.4. Version 2.11.2, 2022-11-20 133

https://github.com/py-pdf/PyPDF2/compare/2.11.2...2.12.0
https://github.com/py-pdf/PyPDF2/compare/2.11.1...2.11.2

PyPDF2

39.5 Version 2.11.1, 2022-10-09

39.5.1 Bug Fixes (BUG)

• td matrix (#1373)

• Cope with cmap from #1322 (#1372)

39.5.2 Robustness (ROB)

• Cope with str returned from get_data in cmap (#1380)

Full Changelog

39.6 Version 2.11.0, 2022-09-25

39.6.1 New Features (ENH)

• Addition of optional visitor-functions in extract_text() (#1252)

• Add metadata.creation_date and modification_date (#1364)

• Add PageObject.images attribute (#1330)

39.6.2 Bug Fixes (BUG)

• Lookup index in _xobj_to_image can be ByteStringObject (#1366)

• ‘IndexError: index out of range’ when using extract_text (#1361)

• Errors in transfer_rotation_to_content() (#1356)

39.6.3 Robustness (ROB)

• Ensure update_page_form_field_values does not fail if no fields (#1346)

Full Changelog

39.7 Version 2.10.9, 2022-09-18

39.7.1 New Features (ENH)

• Add rotation property and transfer_rotate_to_content (#1348)

134 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.11.0...2.11.1
https://github.com/py-pdf/PyPDF2/compare/2.10.9...2.11.0

PyPDF2

39.7.2 Performance Improvements (PI)

• Avoid string concatenation with large embedded base64-encoded images (#1350)

39.7.3 Bug Fixes (BUG)

• Format floats using their intrinsic decimal precision (#1267)

39.7.4 Robustness (ROB)

• Fix merge_page for pages without resources (#1349)

Full Changelog

39.8 Version 2.10.8, 2022-09-14

39.8.1 New Features (ENH)

• Add PageObject.user_unit property (#1336)

39.8.2 Robustness (ROB)

• Improve NameObject reading/writing (#1345)

Full Changelog

39.9 Version 2.10.7, 2022-09-11

39.9.1 Bug Fixes (BUG)

• Fix Error in transformations (#1341)

• Decode #23 in NameObject (#1342)

39.9.2 Testing (TST)

• Use pytest.warns() for warnings, and .raises() for exceptions (#1325)

Full Changelog

39.8. Version 2.10.8, 2022-09-14 135

https://github.com/py-pdf/PyPDF2/compare/2.10.8...2.10.9
https://github.com/py-pdf/PyPDF2/compare/2.10.7...2.10.8
https://github.com/py-pdf/PyPDF2/compare/2.10.6...2.10.7

PyPDF2

39.10 Version 2.10.6, 2022-09-09

39.10.1 Robustness (ROB)

• Fix infinite loop due to Invalid object (#1331)

• Fix image extraction issue with superfluous whitespaces (#1327)

Full Changelog

39.11 Version 2.10.5, 2022-09-04

39.11.1 New Features (ENH)

• Process XRefStm (#1297)

• Auto-detect RTL for text extraction (#1309)

39.11.2 Bug Fixes (BUG)

• Avoid scaling cropbox twice (#1314)

39.11.3 Robustness (ROB)

• Fix offset correction in revised PDF (#1318)

• Crop data of /U and /O in encryption dictionary to 48 bytes (#1317)

• MultiLine bfrange in cmap (#1299)

• Cope with 2 digit codes in bfchar (#1310)

• Accept ‘/annn’ charset as ASCII code (#1316)

• Log errors during Float / NumberObject initialization (#1315)

• Cope with corrupted entries in xref table (#1300)

39.11.4 Documentation (DOC)

• Migration guide (PyPDF2 1.x 2.x) (#1324)

• Creating a coverage report (#1319)

• Fix AnnotationBuilder.free_text example (#1311)

• Fix usage of page.scale by replacing it with page.scale_by (#1313)

136 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.10.5...2.10.6

PyPDF2

39.11.5 Maintenance (MAINT)

• PdfReaderProtocol (#1303)

• Throw PdfReadError if Trailer can’t be read (#1298)

• Remove catching OverflowException (#1302)

Full Changelog

39.12 Version 2.10.4, 2022-08-28

39.12.1 Robustness (ROB)

• Fix errors/warnings on no /Resources within extract_text (#1276)

• Add required line separators in ContentStream ArrayObjects (#1281)

39.12.2 Maintenance (MAINT)

• Use NameObject idempotency (#1290)

39.12.3 Testing (TST)

• Rectangle deletion (#1289)

• Add workflow tests (#1287)

• Remove files after tests ran (#1286)

39.12.4 Packaging (PKG)

• Add minimum version for typing_extensions requirement (#1277)

Full Changelog

39.13 Version 2.10.3, 2022-08-21

39.13.1 Robustness (ROB)

• Decrypt returns empty bytestring (#1258)

39.12. Version 2.10.4, 2022-08-28 137

https://github.com/py-pdf/PyPDF2/compare/2.10.4...2.10.5
https://github.com/py-pdf/PyPDF2/compare/2.10.3...2.10.4

PyPDF2

39.13.2 Developer Experience (DEV)

• Modify CI to better verify built package contents (#1244)

39.13.3 Maintenance (MAINT)

• Remove ‘mine’ as PdfMerger always creates the stream (#1261)

• Let PdfMerger._create_stream raise NotImplemented (#1251)

• password param of _security._alg32(. . .) is only a string, not bytes (#1259)

• Remove unreachable code in read_block_backwards (#1250) and sign function in _extract_text (#1262)

39.13.4 Testing (TST)

• Delete annotations (#1263)

• Close PdfMerger in tests (#1260)

• PdfReader.xmp_metadata workflow (#1257)

• Various PdfWriter (Layout, Bookmark deprecation) (#1249)

Full Changelog

39.14 Version 2.10.2, 2022-08-15

BUG: Add PyPDF2.generic to PyPI distribution

39.15 Version 2.10.1, 2022-08-15

39.15.1 Bug Fixes (BUG)

• TreeObject.remove_child had a non-PdfObject assignment for Count (#1233, #1234)

• Fix stream truncated prematurely (#1223)

39.15.2 Documentation (DOC)

• Fix docstring formatting (#1228)

138 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.10.2...2.10.3

PyPDF2

39.15.3 Maintenance (MAINT)

• Split generic.py (#1229)

39.15.4 Testing (TST)

• Decrypt AlgV4 with owner password (#1239)

• AlgV5.generate_values (#1238)

• TreeObject.remove_child / empty_tree (#1235, #1236)

• create_string_object (#1232)

• Free-Text annotations (#1231)

• generic._base (#1230)

• Strict get fonts (#1226)

• Increase PdfReader coverage (#1219, #1225)

• Increase PdfWriter coverage (#1237)

• 100% coverage for utils.py (#1217)

• PdfWriter exception non-binary stream (#1218)

• Don’t check coverage for deprecated code (#1216)

Full Changelog

39.16 Version 2.10.0, 2022-08-07

39.16.1 New Features (ENH)

• “with” support for PdfMerger and PdfWriter (#1193)

• Add AnnotationBuilder.text(. . .) to build text annotations (#1202)

39.16.2 Bug Fixes (BUG)

• Allow IndirectObjects as stream filters (#1211)

39.16.3 Documentation (DOC)

• Font scrambling

• Page vs Content scaling (#1208)

• Example for orientation parameter of extract_text (#1206)

• Fix AnnotationBuilder parameter formatting (#1204)

39.16. Version 2.10.0, 2022-08-07 139

https://github.com/py-pdf/PyPDF2/compare/2.10.0...2.10.1

PyPDF2

39.16.4 Developer Experience (DEV)

• Add flake8-print (#1203)

39.16.5 Maintenance (MAINT)

• Introduce WrongPasswordError / FileNotDecryptedError / EmptyFileError (#1201)

Full Changelog

39.17 Version 2.9.0, 2022-07-31

39.17.1 New Features (ENH)

• Add ability to add hex encoded colors to outline items (#1186)

• Add support for pathlib.Path in PdfMerger.merge (#1190)

• Add link annotation (#1189)

• Add capability to filter text extraction by orientation (#1175)

39.17.2 Bug Fixes (BUG)

• Named Dest in PDF1.1 (#1174)

• Incomplete Graphic State save/restore (#1172)

39.17.3 Documentation (DOC)

• Update changelog url in package metadata (#1180)

• Mantion camelot for table extraction (#1179)

• Mention pyHanko for signing PDF documents (#1178)

• Weow have CMAP support since a while (#1177)

39.17.4 Maintenance (MAINT)

• Consistant usage of warnings / log messages (#1164)

• Consistent terminology for outline items (#1156)

Full Changelog

140 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.9.0...2.10.0
https://github.com/py-pdf/PyPDF2/compare/2.8.1...2.9.0

PyPDF2

39.18 Version 2.8.1, 2022-07-25

39.18.1 Bug Fixes (BUG)

• u_hash in AlgV4.compute_key (#1170)

39.18.2 Robustness (ROB)

• Fix loading of file from #134 (#1167)

• Cope with empty DecodeParams (#1165)

39.18.3 Documentation (DOC)

• Typo in merger deprecation warning message (#1166)

39.18.4 Maintenance (MAINT)

• Package updates; solve mypy strict remarks (#1163)

39.18.5 Testing (TST)

• Add test from #325 (#1169)

Full Changelog

39.19 Version 2.8.0, 2022-07-24

39.19.1 New Features (ENH)

• Add writer.add_annotation, page.annotations, and generic.AnnotationBuilder (#1120)

39.19.2 Bug Fixes (BUG)

• Set /AS for /Btn form fields in writer (#1161)

• Ignore if /Perms verify failed (#1157)

39.18. Version 2.8.1, 2022-07-25 141

https://github.com/py-pdf/PyPDF2/compare/2.8.0...2.8.1

PyPDF2

39.19.3 Robustness (ROB)

• Cope with utf16 character for space calculation (#1155)

• Cope with null params for FitH / FitV destination (#1152)

• Handle outlines without valid destination (#1076)

39.19.4 Developer Experience (DEV)

• Introduce _utils.logger_warning (#1148)

39.19.5 Maintenance (MAINT)

• Break up parse_to_unicode (#1162)

• Add diagnostic output to exception in read_from_stream (#1159)

• Reduce PdfReader.read complexity (#1151)

39.19.6 Testing (TST)

• Add workflow tests found by arc testing (#1154)

• Decrypt file which is not encrypted (#1149)

• Test CryptRC4 encryption class; test image extraction filters (#1147)

Full Changelog

39.20 Version 2.7.0, 2022-07-21

39.20.1 New Features (ENH)

• Add outline_count property (#1129)

39.20.2 Bug Fixes (BUG)

• Make reader.get_fields also return dropdowns with options (#1114)

• Add deprecated EncodedStreamObject functions back until PyPDF2==3.0.0 (#1139)

39.20.3 Robustness (ROB)

• Cope with missing /W entry (#1136)

• Cope with invalid parent xref (#1133)

142 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.7.0...2.8.0

PyPDF2

39.20.4 Documentation (DOC)

• Contributors file (#1132)

• Fix type in signature of PdfWriter.add_uri (#1131)

39.20.5 Developer Experience (DEV)

• Add .git-blame-ignore-revs (#1141)

39.20.6 Code Style (STY)

• Fixing typos (#1137)

• Re-use code via get_outlines_property in tests (#1130)

Full Changelog

39.21 Version 2.6.0, 2022-07-17

39.21.1 New Features (ENH)

• Add color and font_format to PdfReader.outlines[i] (#1104)

• Extract Text Enhancement (whitespaces) (#1084)

39.21.2 Bug Fixes (BUG)

• Use build_destination for named destination outlines (#1128)

• Avoid a crash when a ToUnicode CMap has an empty dstString in beginbfchar (#1118)

• Prevent deduplication of PageObject (#1105)

• None-check in DictionaryObject.read_from_stream (#1113)

• Avoid IndexError in _cmap.parse_to_unicode (#1110)

39.21.3 Documentation (DOC)

• Explanation for git submodule

• Watermark and stamp (#1095)

39.21. Version 2.6.0, 2022-07-17 143

https://github.com/py-pdf/PyPDF2/compare/2.6.0...2.7.0

PyPDF2

39.21.4 Maintenance (MAINT)

• Text extraction improvements (#1126)

• Destination.color returns ArrayObject instead of tuple as fallback (#1119)

• Use add_bookmark_destination in add_bookmark (#1100)

• Use add_bookmark_destination in add_bookmark_dict (#1099)

39.21.5 Testing (TST)

• Add test for arab text (#1127)

• Add xfail for decryption fail (#1125)

• Add xfail test for IndexError when extracting text (#1124)

• Add MCVE showing outline title issue (#1123)

39.21.6 Code Style (STY)

• Use IntFlag for permissions_flag / update_page_form_field_values (#1094)

• Simplify code (#1101)

Full Changelog

39.22 Version 2.5.0, 2022-07-10

39.22.1 New Features (ENH)

• Add support for indexed color spaces / BitsPerComponent for decoding PNGs (#1067)

• Add PageObject._get_fonts (#1083)

39.22.2 Performance Improvements (PI)

• Use iterative DFS in PdfWriter._sweep_indirect_references (#1072)

39.22.3 Bug Fixes (BUG)

• Let Page.scale also scale the crop-/trim-/bleed-/artbox (#1066)

• Column default for CCITTFaxDecode (#1079)

144 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.5.0...2.6.0

PyPDF2

39.22.4 Robustness (ROB)

• Guard against None-value in _get_outlines (#1060)

39.22.5 Documentation (DOC)

• Stamps and watermarks (#1082)

• OCR vs PDF text extraction (#1081)

• Python Version support

• Formatting of CHANGELOG

39.22.6 Developer Experience (DEV)

• Cache downloaded files (#1070)

• Speed-up for CI (#1069)

39.22.7 Maintenance (MAINT)

• Set page.rotate(angle: int) (#1092)

• Issue #416 was fixed by #1015 (#1078)

39.22.8 Testing (TST)

• Image extraction (#1080)

• Image extraction (#1077)

39.22.9 Code Style (STY)

• Apply black

• Typo in Changelog

Full Changelog

39.23 Version 2.4.2, 2022-07-05

39.23.1 New Features (ENH)

• Add PdfReader.xfa attribute (#1026)

39.23. Version 2.4.2, 2022-07-05 145

https://github.com/py-pdf/PyPDF2/compare/2.4.2...2.5.0

PyPDF2

39.23.2 Bug Fixes (BUG)

• Wrong page inserted when PdfMerger.merge is done (#1063)

• Resolve IndirectObject when it refers to a free entry (#1054)

39.23.3 Developer Experience (DEV)

• Added {posargs} to tox.ini (#1055)

39.23.4 Maintenance (MAINT)

• Remove PyPDF2._utils.bytes_type (#1053)

39.23.5 Testing (TST)

• Scale page (indirect rect object) (#1057)

• Simplify pathlib PdfReader test (#1056)

• IndexError of VirtualList (#1052)

• Invalid XML in xmp information (#1051)

• No pycryptodome (#1050)

• Increase test coverage (#1045)

39.23.6 Code Style (STY)

• DOC of compress_content_streams (#1061)

• Minimize diff for #879 (#1049)

Full Changelog

39.24 Version 2.4.1, 2022-06-30

39.24.1 New Features (ENH)

• Add writer.pdf_header property (getter and setter) (#1038)

39.24.2 Performance Improvements (PI)

• Remove b_ call in FloatObject.write_to_stream (#1044)

• Check duplicate objects in writer._sweep_indirect_references (#207)

146 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.4.1...2.4.2

PyPDF2

39.24.3 Documentation (DOC)

• How to surppress exceptions/warnings/log messages (#1037)

• Remove hyphen from lossless (#1041)

• Compression of content streams (#1040)

• Fix inconsistent variable names in add-watermark.md (#1039)

• File size reduction

• Add CHANGELOG to the rendered docs (#1023)

39.24.4 Maintenance (MAINT)

• Handle XML error when reading XmpInformation (#1030)

• Deduplicate Code / add mutmut config (#1022)

39.24.5 Code Style (STY)

• Use unnecessary one-line function / class attribute (#1043)

• Docstring formatting (#1033)

Full Changelog

39.25 Version 2.4.0, 2022-06-26

39.25.1 New Features (ENH):

• Support R6 decrypting (#1015)

• Add PdfReader.pdf_header (#1013)

39.25.2 Performance Improvements (PI):

• Remove ord_ calls (#1014)

39.25.3 Bug Fixes (BUG):

• Fix missing page for bookmark (#1016)

39.25. Version 2.4.0, 2022-06-26 147

https://github.com/py-pdf/PyPDF2/compare/2.4.0...2.4.1

PyPDF2

39.25.4 Robustness (ROB):

• Deal with invalid Destinations (#1028)

39.25.5 Documentation (DOC):

• get_form_text_fields does not extract dropdown data (#1029)

• Adjust PdfWriter.add_uri docstring

• Mention crypto extra_requires for installation (#1017)

39.25.6 Developer Experience (DEV):

• Use /n line endings everywhere (#1027)

• Adjust string formatting to be able to use mutmut (#1020)

• Update Bug report template

Full Changelog

39.26 Version 2.3.1, 2022-06-19

BUG: Forgot to add the interal _codecs subpackage.

Full Changelog

39.27 Version 2.3.0, 2022-06-19

The highlight of this release is improved support for file encryption (AES-128 and AES-256, R5 only). See #749 for
the amazing work of @exiledkingcc Thank you

39.27.1 Deprecations (DEP)

• Rename names to be PEP8-compliant (#967)

• PdfWriter.get_page: the pageNumber parameter is renamed to page_number

• PyPDF2.filters:

– For all classes, a parameter rename: decodeParms decode_parms

– decodeStreamData decode_stream_data

• PyPDF2.xmp:

– XmpInformation.rdfRoot XmpInformation.rdf_root

– XmpInformation.xmp_createDate XmpInformation.xmp_create_date

– XmpInformation.xmp_creatorTool XmpInformation.xmp_creator_tool

– XmpInformation.xmp_metadataDate XmpInformation.xmp_metadata_date

– XmpInformation.xmp_modifyDate XmpInformation.xmp_modify_date

148 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.3.1...2.4.0
https://github.com/py-pdf/PyPDF2/compare/2.3.0...2.3.1

PyPDF2

– XmpInformation.xmpMetadata XmpInformation.xmp_metadata

– XmpInformation.xmpmm_documentId XmpInformation.xmpmm_document_id

– XmpInformation.xmpmm_instanceId XmpInformation.xmpmm_instance_id

• PyPDF2.generic:

– readHexStringFromStream read_hex_string_from_stream

– initializeFromDictionary initialize_from_dictionary

– createStringObject create_string_object

– TreeObject.hasChildren TreeObject.has_children

– TreeObject.emptyTree TreeObject.empty_tree

39.27.2 New Features (ENH)

• Add decrypt support for V5 and AES-128, AES-256 (R5 only) (#749)

39.27.3 Robustness (ROB)

• Fix corrupted (wrongly) linear PDF (#1008)

39.27.4 Maintenance (MAINT)

• Move PDF_Samples folder into ressources

• Fix typos (#1007)

39.27.5 Testing (TST)

• Improve encryption/decryption test (#1009)

• Add merger test cases with real PDFs (#1006)

• Add mutmut config

39.27.6 Code Style (STY)

• Put pure data mappings in separate files (#1005)

• Make encryption module private, apply pre-commit (#1010)

Full Changelog

39.27. Version 2.3.0, 2022-06-19 149

https://github.com/py-pdf/PyPDF2/compare/2.2.1...2.3.0

PyPDF2

39.28 Version 2.2.1, 2022-06-17

39.28.1 Performance Improvements (PI)

• Remove b_ calls (#992, #986)

• Apply improvements to _utils suggested by perflint (#993)

39.28.2 Robustness (ROB)

• utf-16-be codec can’t decode (. . .) (#995)

39.28.3 Documentation (DOC)

• Remove reference to Scripts (#987)

39.28.4 Developer Experience (DEV)

• Fix type annotations for add_bookmarks (#1000)

39.28.5 Testing (TST)

• Add test for PdfMerger (#1001)

• Add tests for XMP information (#996)

• reader.get_fields / zlib issue / LZW decode issue (#1004)

• reader.get_fields with report generation (#1002)

• Improve test coverage by extracting texts (#998)

39.28.6 Code Style (STY)

• Apply fixes suggested by pylint (#999)

Full Changelog

39.29 Version 2.2.0, 2022-06-13

The 2.2.0 release improves text extraction again via (#969):

• Improvements around /Encoding / /ToUnicode

• Extraction of CMaps improved

• Fallback for font def missing

• Support for /Identity-H and /Identity-V: utf-16-be

• Support for /GB-EUC-H / /GB-EUC-V / GBp/c-EUC-H / /GBpc-EUC-V (beta release for evaluation)

• Arabic (for evaluation)

150 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.2.0...2.2.1

PyPDF2

• Whitespace extraction improvements

Those changes should mainly improve the text extraction for non-ASCII alphabets, e.g. Russian / Chinese / Japanese /
Korean / Arabic.

Full Changelog

39.30 Version 2.1.1, 2022-06-12

39.30.1 New Features (ENH)

• Add support for pathlib as input for PdfReader (#979)

39.30.2 Performance Improvements (PI)

• Optimize read_next_end_line (#646)

39.30.3 Bug Fixes (BUG)

• Adobe Acrobat ‘Would you like to save this file?’ (#970)

39.30.4 Documentation (DOC)

• Notes on annotations (#982)

• Who uses PyPDF2

• intendet \xe2\x9e\x94 in robustness page (#958)

39.30.5 Maintenance (MAINT)

• pre-commit / requirements.txt updates (#977)

• Mark read_next_end_line as deprecated (#965)

• Export PageObject in PyPDF2 root (#960)

39.30.6 Testing (TST)

• Add MCVE of issue #416 (#980)

• FlateDecode.decode decodeParms (#964)

• Xmp module (#962)

• utils.paeth_predictor (#959)

39.30. Version 2.1.1, 2022-06-12 151

https://github.com/py-pdf/PyPDF2/compare/2.1.1...2.2.0

PyPDF2

39.30.7 Code Style (STY)

• Use more tuples and list/dict comprehensions (#976)

Full Changelog

39.31 Version 2.1.0, 2022-06-06

The highlight of the 2.1.0 release is the most massive improvement to the text extraction capabilities of PyPDF2 since
2016 A very big thank you goes to pubpub-zz who took a lot of time and knowledge about the PDF format to finally
get those improvements into PyPDF2. Thank you

In case the new function causes any issues, you can use _extract_text_old for the old functionality. Please also
open a bug ticket in that case.

There were several people who have attempted to bring similar improvements to PyPDF2. All of those were valu-
able. The main reason why they didn’t get merged is the big amount of open PRs / issues. pubpub-zz was the most
comprehensive PR which also incorporated the latest changes of PyPDF2 2.0.0.

Thank you to VictorCarlquist for #858 and asabramo for #464

39.31.1 New Features (ENH)

• Massive text extraction improvement (#924). Closed many open issues:

– Exceptions / missing spaces in extract_text() method (#17)

∗ Whitespace issues in extract_text() (#42)

∗ pypdf2 reads the hifenated words in a new line (#246)

– PyPDF2 failing to read unicode character (#37)

∗ Unable to read bullets (#230)

– ExtractText yields nothing for apparently good PDF (#168)

– Encoding issue in extract_text() (#235)

– extractText() doesn’t work on Chinese PDF (#252)

– encoding error (#260)

– Trouble with apostophes in names in text “O’Doul” (#384)

– extract_text works for some PDF files, but not the others (#437)

– Euro sign not being recognized by extractText (#443)

– Failed extracting text from French texts (#524)

– extract_text doesn’t extract ligatures correctly (#598)

– reading spanish text - mark convert issue (#635)

– Read PDF changed from text to random symbols (#654)

– .extractText() reads / as 1. (#789)

• Update glyphlist (#947) - inspired by #464

• Allow adding PageRange objects (#948)

152 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/2.1.0...2.1.1
https://github.com/pubpub-zz
https://github.com/VictorCarlquist
https://github.com/asabramo

PyPDF2

39.31.2 Bug Fixes (BUG)

• Delete .python-version file (#944)

• Compare StreamObject.decoded_self with None (#931)

39.31.3 Robustness (ROB)

• Fix some conversion errors on non conform PDF (#932)

39.31.4 Documentation (DOC)

• Elaborate on PDF text extraction difficulties (#939)

• Add logo (#942)

• rotate vs Transformation().rotate (#937)

• Example how to use PyPDF2 with AWS S3 (#938)

• How to deprecate (#930)

• Fix typos on robustness page (#935)

• Remove scripts (pdfcat) from docs (#934)

39.31.5 Developer Experience (DEV)

• Ignore .python-version file

• Mark deprecated code with no-cover (#943)

• Automatically create Github releases from tags (#870)

39.31.6 Testing (TST)

• Text extraction for non-latin alphabets (#954)

• Ignore PdfReadWarning in benchmark (#949)

• writer.remove_text (#946)

• Add test for Tree and _security (#945)

39.31.7 Code Style (STY)

• black, isort, Flake8, splitting buildCharMap (#950)

Full Changelog

39.31. Version 2.1.0, 2022-06-06 153

https://github.com/py-pdf/PyPDF2/compare/2.0.0...2.1.0

PyPDF2

39.32 Version 2.0.0, 2022-06-01

The 2.0.0 release of PyPDF2 includes three core changes:

1. Dropping support for Python 3.5 and older.

2. Introducing type annotations.

3. Interface changes, mostly to have PEP8-compliant names

We introduced a deprecation process that hopefully helps users to avoid unexpected breaking changes.

39.32.1 Breaking Changes (DEP)

• PyPDF2 2.0 requires Python 3.6+. Python 2.7 and 3.5 support were dropped.

• PdfFileReader: The “warndest” parameter was removed

• PdfFileReader and PdfFileMerger no longer have the overwriteWarnings parameter. The new behavior is
overwriteWarnings=False.

• merger: OutlinesObject was removed without replacement.

• merger.py _merger.py: You must import PdfFileMerger from PyPDF2 directly.

• utils:

– ConvertFunctionsToVirtualList was removed

– formatWarning was removed

– isInt(obj): Use instance(obj, int) instead

– u_(s): Use s directly

– chr_(c): Use chr(c) instead

– barray(b): Use bytearray(b) instead

– isBytes(b): Use instance(b, type(bytes())) instead

– xrange_fn: Use range instead

– string_type: Use str instead

– isString(s): Use instance(s, str) instead

– _basestring: Use str instead

– All Exceptions are now in PyPDF2.errors:

∗ PageSizeNotDefinedError

∗ PdfReadError

∗ PdfReadWarning

∗ PyPdfError

• PyPDF2.pdf (the pdf module) no longer exists. The contents were moved with the library. You should most
likely import directly from PyPDF2 instead. The RectangleObject is in PyPDF2.generic.

• The Resources, Scripts, and Tests will no longer be part of the distribution files on PyPI. This should have
little to no impact on most people. The Tests are renamed to tests, the Resources are renamed to resources.
Both are still in the git repository. The Scripts are now in cpdf. Sample_Code was moved to the docs.

154 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/pull/930
https://github.com/py-pdf/cpdf

PyPDF2

For a full list of deprecated functions, please see the changelog of version 1.28.0.

39.32.2 New Features (ENH)

• Improve space setting for text extraction (#922)

• Allow setting the decryption password in PdfReader.__init__ (#920)

• Add Page.add_transformation (#883)

39.32.3 Bug Fixes (BUG)

• Fix error adding transformation to page without /Contents (#908)

39.32.4 Robustness (ROB)

• Cope with invalid length in streams (#861)

39.32.5 Documentation (DOC)

• Fix style of 1.25 and 1.27 patch notes (#927)

• Transformation (#907)

39.32.6 Developer Experience (DEV)

• Create flake8 config file (#916)

• Use relative imports (#875)

39.32.7 Maintenance (MAINT)

• Use Python 3.6 language features (#849)

• Add wrapper function for PendingDeprecationWarnings (#928)

• Use new PEP8 compliant names (#884)

• Explicitly represent transformation matrix (#878)

• Inline PAGE_RANGE_HELP string (#874)

• Remove unnecessary generics imports (#873)

• Remove star imports (#865)

• merger.py _merger.py (#864)

• Type annotations for all functions/methods (#854)

• Add initial type support with mypy (#853)

39.32. Version 2.0.0, 2022-06-01 155

PyPDF2

39.32.8 Testing (TST)

• Regression test for xmp_metadata converter (#923)

• Checkout submodule sample-files for benchmark

• Add text extracting performance benchmark

• Use new PyPDF2 API in benchmark (#902)

• Make test suite fail for uncaught warnings (#892)

• Remove -OO testrun from CI (#901)

• Improve tests for convert_to_int (#899)

Full Changelog

39.33 PyPDF2 1.X

See CHANGELOG PyPDF2 1.X

156 Chapter 39. CHANGELOG

https://github.com/py-pdf/PyPDF2/compare/1.28.4...2.0.0
changelog-v1.md

CHAPTER

FORTY

CHANGELOG OF PYPDF2 1.X

40.1 Version 1.28.4, 2022-05-29

Bug Fixes (BUG):

• XmpInformation._converter_date was unusable (#921)

Full Changelog

40.2 Version 1.28.3, 2022-05-28

40.2.1 Deprecations (DEP)

• PEP8 renaming (#905)

40.2.2 Bug Fixes (BUG)

• XmpInformation missing method _getText (#917)

• Fix PendingDeprecationWarning on _merge_page (#904)

Full Changelog

40.3 Version 1.28.2, 2022-05-23

40.3.1 Bug Fixes (BUG)

• PendingDeprecationWarning for getContents (#893)

• PendingDeprecationWarning on using PdfMerger (#891)

Full Changelog

157

https://github.com/py-pdf/PyPDF2/compare/1.28.3...1.28.4
https://github.com/py-pdf/PyPDF2/compare/1.28.2...1.28.3
https://github.com/py-pdf/PyPDF2/compare/1.28.1...1.28.2

PyPDF2

40.4 Version 1.28.1, 2022-05-22

40.4.1 Bug Fixes (BUG)

• Incorrectly show deprecation warnings on internal usage (#887)

40.4.2 Maintenance (MAINT)

• Add stacklevel=2 to deprecation warnings (#889)

• Remove duplicate warnings imports (#888)

Full Changelog

40.5 Version 1.28.0, 2022-05-22

This release adds a lot of deprecation warnings in preparation of the PyPDF2 2.0.0 release. The changes are mostly
using snake_case function-, method-, and variable-names as well as using properties instead of getter-methods.

Maintenance (MAINT):

• Remove IronPython Fallback for zlib (#868)

Full Changelog

40.5.1 Deprecations (DEP)

• Make the PyPDF2.utils module private

• Rename of core classes:

– PdfFileReader PdfReader

– PdfFileWriter PdfWriter

– PdfFileMerger PdfMerger

• Use PEP8 conventions for function names and parameters

• If a property and a getter-method are both present, use the property

Details

In many places:

• getObject get_object

• writeToStream write_to_stream

• readFromStream read_from_stream

PyPDF2.generic

• readObject read_object

• convertToInt convert_to_int

158 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.28.0...1.28.1
https://github.com/py-pdf/PyPDF2/compare/1.27.12...1.27.13

PyPDF2

• DocumentInformation.getText DocumentInformation._get_text : This method should typically not be used;
please let me know if you need it.

PdfReader class:

• reader.getPage(pageNumber) reader.pages[page_number]

• reader.getNumPages() / reader.numPages len(reader.pages)

• getDocumentInfo metadata

• flattenedPages attribute flattened_pages

• resolvedObjects attribute resolved_objects

• xrefIndex attribute xref_index

• getNamedDestinations / namedDestinations attribute named_destinations

• getPageLayout / pageLayout page_layout attribute

• getPageMode / pageMode page_mode attribute

• getIsEncrypted / isEncrypted is_encrypted attribute

• getOutlines get_outlines

• readObjectHeader read_object_header

• cacheGetIndirectObject cache_get_indirect_object

• cacheIndirectObject cache_indirect_object

• getDestinationPageNumber get_destination_page_number

• readNextEndLine read_next_end_line

• _zeroXref _zero_xref

• _authenticateUserPassword _authenticate_user_password

• _pageId2Num attribute _page_id2num

• _buildDestination _build_destination

• _buildOutline _build_outline

• _getPageNumberByIndirect(indirectRef) _get_page_number_by_indirect(indirect_ref)

• _getObjectFromStream _get_object_from_stream

• _decryptObject _decrypt_object

• _flatten(. . . , indirectRef) _flatten(. . . , indirect_ref)

• _buildField _build_field

• _checkKids _check_kids

• _writeField _write_field

• _write_field(. . . , fieldAttributes) _write_field(. . . , field_attributes)

• _read_xref_subsections(. . . , getEntry, . . .) _read_xref_subsections(. . . , get_entry, . . .)

PdfWriter class:

• writer.getPage(pageNumber) writer.pages[page_number]

• writer.getNumPages() len(writer.pages)

40.5. Version 1.28.0, 2022-05-22 159

PyPDF2

• addMetadata add_metadata

• addPage add_page

• addBlankPage add_blank_page

• addAttachment(fname, fdata) add_attachment(filename, data)

• insertPage insert_page

• insertBlankPage insert_blank_page

• appendPagesFromReader append_pages_from_reader

• updatePageFormFieldValues update_page_form_field_values

• cloneReaderDocumentRoot clone_reader_document_root

• cloneDocumentFromReader clone_document_from_reader

• getReference get_reference

• getOutlineRoot get_outline_root

• getNamedDestRoot get_named_dest_root

• addBookmarkDestination add_bookmark_destination

• addBookmarkDict add_bookmark_dict

• addBookmark add_bookmark

• addNamedDestinationObject add_named_destination_object

• addNamedDestination add_named_destination

• removeLinks remove_links

• removeImages(ignoreByteStringObject) remove_images(ignore_byte_string_object)

• removeText(ignoreByteStringObject) remove_text(ignore_byte_string_object)

• addURI add_uri

• addLink add_link

• getPage(pageNumber) get_page(page_number)

• getPageLayout / setPageLayout / pageLayout page_layout attribute

• getPageMode / setPageMode / pageMode page_mode attribute

• _addObject _add_object

• _addPage _add_page

• _sweepIndirectReferences _sweep_indirect_references

PdfMerger class

• __init__ parameter: strict=True strict=False (the PdfFileMerger still has the old default)

• addMetadata add_metadata

• addNamedDestination add_named_destination

• setPageLayout set_page_layout

• setPageMode set_page_mode

Page class:

160 Chapter 40. Changelog of PyPDF2 1.X

PyPDF2

• artBox / bleedBox/ cropBox/ mediaBox / trimBox artbox / bleedbox/ cropbox/ mediabox / trimbox

– getWidth, getHeight width / height

– getLowerLeft_x / getUpperLeft_x left

– getUpperRight_x / getLowerRight_x right

– getLowerLeft_y / getLowerRight_y bottom

– getUpperRight_y / getUpperLeft_y top

– getLowerLeft / setLowerLeft lower_left property

– upperRight upper_right

• mergePage merge_page

• rotateClockwise / rotateCounterClockwise rotate_clockwise

• _mergeResources _merge_resources

• _contentStreamRename _content_stream_rename

• _pushPopGS _push_pop_gs

• _addTransformationMatrix _add_transformation_matrix

• _mergePage _merge_page

XmpInformation class:

• getElement(. . . , aboutUri, . . .) get_element(. . . , about_uri, . . .)

• getNodesInNamespace(. . . , aboutUri, . . .) get_nodes_in_namespace(. . . , aboutUri, . . .)

• _getText _get_text

utils.py:

• matrixMultiply matrix_multiply

• RC4_encrypt is moved to the security module

40.6 Version 1.27.12, 2022-05-02

40.6.1 Bug Fixes (BUG)

• _rebuild_xref_table expects trailer to be a dict (#857)

40.6.2 Documentation (DOC)

• Security Policy

Full Changelog

40.6. Version 1.27.12, 2022-05-02 161

https://github.com/py-pdf/PyPDF2/compare/1.27.11...1.27.12

PyPDF2

40.7 Version 1.27.11, 2022-05-02

40.7.1 Bug Fixes (BUG)

• Incorrectly issued xref warning/exception (#855)

Full Changelog

40.8 Version 1.27.10, 2022-05-01

40.8.1 Robustness (ROB)

• Handle missing destinations in reader (#840)

• warn-only in readStringFromStream (#837)

• Fix corruption in startxref or xref table (#788 and #830)

40.8.2 Documentation (DOC)

• Project Governance (#799)

• History of PyPDF2

• PDF feature/version support (#816)

• More details on text parsing issues (#815)

40.8.3 Developer Experience (DEV)

• Add benchmark command to Makefile

• Ignore IronPython parts for code coverage (#826)

40.8.4 Maintenance (MAINT)

• Split pdf module (#836)

• Separated CCITTFax param parsing/decoding (#841)

• Update requirements files

40.8.5 Testing (TST)

• Use external repository for larger/more PDFs for testing (#820)

• Swap incorrect test names (#838)

• Add test for PdfFileReader and page properties (#835)

• Add tests for PyPDF2.generic (#831)

• Add tests for utils, form fields, PageRange (#827)

• Add test for ASCII85Decode (#825)

162 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.27.10...1.27.11

PyPDF2

• Add test for FlateDecode (#823)

• Add test for filters.ASCIIHexDecode (#822)

40.8.6 Code Style (STY)

• Apply pre-commit (black, isort) + use snake_case variables (#832)

• Remove debug code (#828)

• Documentation, Variable names (#839)

Full Changelog

40.9 Version 1.27.9, 2022-04-24

A change I would like to highlight is the performance improvement for large PDF files (#808)

40.9.1 New Features (ENH)

• Add papersizes (#800)

• Allow setting permission flags when encrypting (#803)

• Allow setting form field flags (#802)

40.9.2 Bug Fixes (BUG)

• TypeError in xmp._converter_date (#813)

• Improve spacing for text extraction (#806)

• Fix PDFDocEncoding Character Set (#809)

40.9.3 Robustness (ROB)

• Use null ID when encrypted but no ID given (#812)

• Handle recursion error (#804)

40.9.4 Documentation (DOC)

• CMaps (#811)

• The PDF Format + commit prefixes (#810)

• Add compression example (#792)

40.9. Version 1.27.9, 2022-04-24 163

https://github.com/py-pdf/PyPDF2/compare/1.27.9...1.27.10

PyPDF2

40.9.5 Developer Experience (DEV)

• Add Benchmark for Performance Testing (#781)

40.9.6 Maintenance (MAINT)

• Validate PDF magic byte in strict mode (#814)

• Make PdfFileMerger.addBookmark() behave life PdfFileWriters’ (#339)

• Quadratic runtime while parsing reduced to linear (#808)

40.9.7 Testing (TST)

• Newlines in text extraction (#807)

Full Changelog

40.10 Version 1.27.8, 2022-04-21

40.10.1 Bug Fixes (BUG)

• Use 1MB as offset for readNextEndLine (#321)

• ‘PdfFileWriter’ object has no attribute ‘stream’ (#787)

40.10.2 Robustness (ROB)

• Invalid float object; use 0 as fallback (#782)

40.10.3 Documentation (DOC)

• Robustness (#785)

Full Changelog

40.11 Version 1.27.7, 2022-04-19

40.11.1 Bug Fixes (BUG)

• Import exceptions from PyPDF2.errors in PyPDF2.utils (#780)

164 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.27.8...1.27.9
https://github.com/py-pdf/PyPDF2/compare/1.27.7...1.27.8

PyPDF2

40.11.2 Code Style (STY)

• Naming in ‘make_changelog.py’

40.12 Version 1.27.6, 2022-04-18

40.12.1 Deprecations (DEP)

• Remove support for Python 2.6 and older (#776)

40.12.2 New Features (ENH)

• Extract document permissions (#320)

40.12.3 Bug Fixes (BUG)

• Clip by trimBox when merging pages, which would otherwise be ignored (#240)

• Add overwriteWarnings parameter PdfFileMerger (#243)

• IndexError for getPage() of decryped file (#359)

• Handle cases where decodeParms is an ArrayObject (#405)

• Updated PDF fields don’t show up when page is written (#412)

• Set Linked Form Value (#414)

• Fix zlib -5 error for corrupt files (#603)

• Fix reading more than last1K for EOF (#642)

• Acciental import

40.12.4 Robustness (ROB)

• Allow extra whitespace before “obj” in readObjectHeader (#567)

40.12.5 Documentation (DOC)

• Link to pdftoc in Sample_Code (#628)

• Working with annotations (#764)

• Structure history

40.12. Version 1.27.6, 2022-04-18 165

PyPDF2

40.12.6 Developer Experience (DEV)

• Add issue templates (#765)

• Add tool to generate changelog

40.12.7 Maintenance (MAINT)

• Use grouped constants instead of string literals (#745)

• Add error module (#768)

• Use decorators for @staticmethod (#775)

• Split long functions (#777)

40.12.8 Testing (TST)

• Run tests in CI once with -OO Flags (#770)

• Filling out forms (#771)

• Add tests for Writer (#772)

• Error cases (#773)

• Check Error messages (#769)

• Regression test for issue #88

• Regression test for issue #327

40.12.9 Code Style (STY)

• Make variable naming more consistent in tests

Full changelog

40.13 Version 1.27.5, 2022-04-15

40.13.1 Security (SEC)

• ContentStream_readInlineImage had potential infinite loop (#740)

40.13.2 Bug fixes (BUG)

• Fix merging encrypted files (#757)

• CCITTFaxDecode decodeParms can be an ArrayObject (#756)

166 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.27.5...1.27.6

PyPDF2

40.13.3 Robustness improvements (ROBUST)

• title sometimes None (#744)

40.13.4 Documentation (DOC)

• Adjust short description of the package

40.13.5 Tests and Test setup (TST)

• Rewrite JS tests from unittest to pytest (#746)

• Increase Test coverage, mainly with filters (#756)

• Add test for inline images (#758)

40.13.6 Developer Experience Improvements (DEV)

• Remove unused Travis-CI configuration (#747)

• Show code coverage (#754, #755)

• Add mutmut (#760)

40.13.7 Miscellaneous

• STY: Closing file handles, explicit exports, . . . (#743)

Full Changelog

40.14 Version 1.27.4, 2022-04-12

40.14.1 Bug fixes (BUG)

• Guard formatting of __init__.__doc__ string (#738)

40.14.2 Packaging (PKG)

• Add more precise license field to setup (#733)

40.14. Version 1.27.4, 2022-04-12 167

https://github.com/py-pdf/PyPDF2/compare/1.27.4...1.27.5

PyPDF2

40.14.3 Testing (TST)

• Add test for issue #297

40.14.4 Miscellaneous

• DOC: Miscallenious Miscellaneous (Typo)

• TST: Fix CI triggering (master main) (#739)

• STY: Fix various style issues (#742)

Full Changelog

40.15 Version 1.27.3, 2022-04-10

• PKG: Make Tests not a subpackage (#728)

• BUG: Fix ASCII85Decode.decode assertion (#729)

• BUG: Error in Chinese character encoding (#463)

• BUG: Code duplication in Scripts/2-up.py

• ROBUST: Guard ‘obj.writeToStream’ with ‘if obj is not None’

• ROBUST: Ignore a /Prev entry with the value 0 in the trailer

• MAINT: Remove Sample_Code (#726)

• TST: Close file handle in test_writer (#722)

• TST: Fix test_get_images (#730)

• DEV: Make tox use pytest and add more Python versions (#721)

• DOC: Many (#720, #723-725, #469)

Full Changelog

40.16 Version 1.27.2, 2022-04-09

• Add Scripts (including pdfcat), Resources, Tests, and Sample_Code back to PyPDF2. It was removed by
accident in 1.27.0, but might get removed with 2.0.0 See discussions/718.

Full Changelog

168 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.27.3...1.27.4
https://github.com/py-pdf/PyPDF2/compare/1.27.2...1.27.3
https://github.com/py-pdf/PyPDF2/discussions/718
https://github.com/py-pdf/PyPDF2/compare/1.27.1...1.27.2

PyPDF2

40.17 Version 1.27.1, 2022-04-08

• Fixed project links on PyPI page after migration from mstamy2 to MartinThoma to the py-pdf organization on
GitHub

• Documentation is now at pypdf2.readthedocs.io

Full Changelog

40.18 Version 1.27.0, 2022-04-07

Features:

• Add alpha channel support for png files in Script (#614)

40.18.1 Bug fixes (BUG)

• Fix formatWarning for filename without slash (#612)

• Add whitespace between words for extractText() (#569, #334)

• “invalid escape sequence” SyntaxError (#522)

• Avoid error when printing warning in pythonw (#486)

• Stream operations can be List or Dict (#665)

40.18.2 Documentation (DOC)

• Added Scripts/pdf-image-extractor.py

• Documentation improvements (#550, #538, #324, #426, #394)

40.18.3 Tests and Test setup (TST)

• Add Github Action which automatically run unit tests via pytest and static code analysis with Flake8 (#660)

• Add several unit tests (#661, #663)

• Add .coveragerc to create coverage reports

40.18.4 Developer Experience Improvements (DEV)

• Pre commit: Developers can now pre-commit install to avoid tiny issues like trailing whitespaces

40.17. Version 1.27.1, 2022-04-08 169

https://pypdf2.readthedocs.io/en/latest/
https://github.com/py-pdf/PyPDF2/compare/1.27.0...1.27.1

PyPDF2

40.18.5 Miscellaneous

• Add the LICENSE file to the distributed packages (#288)

• Use setuptools instead of distutils (#599)

• Improvements for the PyPI page (#644)

• Python 3 changes (#504, #366)

Full Changelog

40.19 Version 1.26.0, 2016-05-18

• NOTE: Active maintenance on PyPDF2 is resuming after a hiatus

• Fixed a bug where image resources where incorrectly overwritten when merging pages

• Added dictionary for JavaScript actions to the root (louib)

• Added unit tests for the JS functionality (louib)

• Add more Python 3 compatibility when reading inline images (im2703 and (VyacheslavHashov)

• Return NullObject instead of raising error when failing to resolve object (ctate)

• Don’t output warning for non-zeroed xref table when strict=False (BenRussert)

• Remove extraneous zeroes from output formatting (speedplane)

• Fix bug where reading an inline image would cut off prematurely in certain cases (speedplane)

40.20 Version 1.25.1, 2015-07-20

• Fix bug when parsing inline images. Occurred when merging certain pages with inline images

• Fixed type error when creating outlines by utilizing the isString() test

40.21 Version 1.25, 2015-07-07

BUGFIXES:

• Added Python 3 algorithm for ASCII85Decode. Fixes issue when reading reportlab-generated files with Py 3
(jerickbixly)

• Recognize more escape sequence which would otherwise throw an exception (manuelzs, robertsoakes)

• Fixed overflow error in generic.py. Occurred when reading a too-large int in Python 2 (by Raja Jamwal)

• Allow access to files which were encrypted with an empty password. Previously threw a “File has not been
decrypted” exception (Elena Williams)

• Do not attempt to decode an empty data stream. Previously would cause an error in decode algorithms (vladir)

• Fixed some type issues specific to Py 2 or Py 3

• Fix issue when stream data begins with whitespace (soloma83)

• Recognize abbreviated filter names (AlmightyOatmeal and Matthew Weiss)

170 Chapter 40. Changelog of PyPDF2 1.X

https://github.com/py-pdf/PyPDF2/compare/1.26.0...1.27.0

PyPDF2

• Copy decryption key from PdfFileReader to PdfFileMerger. Allows usage of PdfFileMerger with encrypted files
(twolfson)

• Fixed bug which occurred when a NameObject is present at end of a file stream. Threw a “Stream has ended
unexpectedly” exception (speedplane)

FEATURES:

• Initial work on a test suite; to be expanded in future. Tests and Resources directory added, README updated
(robertsoakes)

• Added document cloning methods to PdfFileWriter: appendPagesFromReader, cloneReaderDocumentRoot, and
cloneDocumentFromReader. See official documentation (robertsoakes)

• Added method for writing to form fields: updatePageFormFieldValues. This will be enhanced in the future. See
official documentation (robertsoakes)

• New addAttachment method. See documentation. Support for adding and extracting embedded files to be en-
hanced in the future (moshekaplan)

• Added methods to get page number of given PageObject or Destination: getPageNumber and getDestinationPa-
geNumber. See documentation (mozbugbox)

OTHER ENHANCEMENTS:

• Enhanced type handling (Brent Amrhein)

• Enhanced exception handling in NameObject (sbywater)

• Enhanced extractText method output (peircej)

• Better exception handling

• Enhanced regex usage in NameObject class (speedplane)

40.22 Version 1.24, 2014-12-31

• Bugfixes for reading files in Python 3 (by Anthony Tuininga and pqqp)

• Appropriate errors are now raised instead of infinite loops (by naure and Cyrus Vafadari)

• Bugfix for parsing number tokens with leading spaces (by Maxim Kamenkov)

• Don’t crash on bad /Outlines reference (by eshellman)

• Conform tabs/spaces and blank lines to PEP 8 standards

• Utilize the readUntilRegex method when reading Number Objects (by Brendan Jurd)

• More bugfixes for Python 3 and clearer exception handling

• Fixed encoding issue in merger (with eshellman)

• Created separate folder for scripts

40.22. Version 1.24, 2014-12-31 171

PyPDF2

40.23 Version 1.23, 2014-08-11

• Documentation now available at pythonhosted.org

• Bugfix in pagerange.py for when __init__.__doc__ has no value (by Vladir Cruz)

• Fix typos in OutlinesObject().add() (by shilluc)

• Re-added a missing return statement in a utils.py method

• Corrected viewing mode names (by Jason Scheirer)

• New PdfFileWriter method: addJS() (by vfigueiro)

• New bookmark features: color, boldness, italics, and page fit (by Joshua Arnott)

• New PdfFileReader method: getFields(). Used to extract field information from PDFs with interactive forms.
See documentation for details

• Converted README file to markdown format (by Stephen Bussard)

• Several improvements to overall performance and efficiency (by mozbugbox)

• Fixed a bug where geospatial information was not scaling along with its page

• Fixed a type issue and a Python 3 issue in the decryption algorithms (with Francisco Vieira and koba-ninkigumi)

• Fixed a bug causing an infinite loop in the ASCII 85 decoding algorithm (by madmaardigan)

• Annotations (links, comment windows, etc.) are now preserved when pages are merged together

• Used the Destination class in addLink() and addBookmark() so that the page fit option could be properly cus-
tomized

40.24 Version 1.22, 2014-05-29

• Added .DS_Store to .gitignore (for Mac users) (by Steve Witham)

• Removed __init__() implementation in NameObject (by Steve Witham)

• Fixed bug (inf. loop) when merging pages in Python 3 (by commx)

• Corrected error when calculating height in scaleTo()

• Removed unnecessary code from DictionaryObject (by Georges Dubus)

• Fixed bug where an exception was thrown upon reading a NULL string (by speedplane)

• Allow string literals (non-unicode strings in Python 2) to be passed to PdfFileReader

• Allow ConvertFunctionsToVirtualList to be indexed with slices and longs (in Python 2) (by Matt Gilson)

• Major improvements and bugfixes to addLink() method (see documentation in source code) (by Henry Keiter)

• General code clean-up and improvements (with Steve Witham and Henry Keiter)

• Fixed bug that caused crash when comments are present at end of dictionary

172 Chapter 40. Changelog of PyPDF2 1.X

PyPDF2

40.25 Version 1.21, 2014-04-21

• Fix for when /Type isn’t present in the Pages dictionary (by Rob1080)

• More tolerance for extra whitespace in Indirect Objects

• Improved Exception handling

• Fixed error in getHeight() method (by Simon Kaempflein)

• implement use of utils.string_type to resolve Py2-3 compatibility issues

• Prevent exception for multiple definitions in a dictionary (with carlosfunk) (only when strict = False)

• Fixed errors when parsing a slice using pdfcat on command line (by Steve Witham)

• Tolerance for EOF markers within 1024 bytes of the actual end of the file (with David Wolever)

• Added overwriteWarnings parameter to PdfFileReader constructor, if False PyPDF2 will NOT overwrite methods
from Python’s warnings.py module with a custom implementation.

• Fix NumberObject and NameObject constructors for compatibility with PyPy (Rüdiger Jungbeck, Xavier Dupré,
shezadkhan137, Steven Witham)

• Utilize utils.Str in pdf.py and pagerange.py to resolve type issues (by egbutter)

• Improvements in implementing StringIO for Python 2 and BytesIO for Python 3 (by Xavier Dupré)

• Added /x00 to Whitespaces, defined utils.WHITESPACES to clarify code (by Maxim Kamenkov)

• Bugfix for merging 3 or more resources with the same name (by lucky-user)

• Improvements to Xref parsing algorithm (by speedplane)

40.26 Version 1.20, 2014-01-27

• Official Python 3+ support (with contributions from TWAC and cgammans) Support for Python versions 2.6 and
2.7 will be maintained

• Command line concatenation (see pdfcat in sample code) (by Steve Witham)

• New FAQ; link included in README

• Allow more (although unnecessary) escape sequences

• Prevent exception when reading a null object in decoding parameters

• Corrected error in reading destination types (added a slash since they are name objects)

• Corrected TypeError in scaleTo() method

• addBookmark() method in PdfFileMerger now returns bookmark (so nested bookmarks can be created)

• Additions to Sample Code and Sample PDFs

• changes to allow 2up script to work (see sample code) (by Dylan McNamee)

• changes to metadata encoding (by Chris Hiestand)

• New methods for links: addLink() (by Enrico Lambertini) and removeLinks()

• Bugfix to handle nested bookmarks correctly (by Jamie Lentin)

• New methods removeImages() and removeText() available for PdfFileWriter (by Tien Haï)

• Exception handling for illegal characters in Name Objects

40.25. Version 1.21, 2014-04-21 173

PyPDF2

40.27 Version 1.19, 2013-10-08

BUGFIXES:

• Removed pop in sweepIndirectReferences to prevent infinite loop (provided by ian-su-sirca)

• Fixed bug caused by whitespace when parsing PDFs generated by AutoCad

• Fixed a bug caused by reading a ‘null’ ASCII value in a dictionary object (primarily in PDFs generated by
AutoCad).

FEATURES:

• Added new folders for PyPDF2 sample code and example PDFs; see README for each folder

• Added a method for debugging purposes to show current location while parsing

• Ability to create custom metadata (by jamma313)

• Ability to access and customize document layout and view mode (by Joshua Arnott)

OTHER:

• Added and corrected some documentation

• Added some more warnings and exception messages

• Removed old test/debugging code

UPCOMING:

• More bugfixes (We have received many problematic PDFs via email, we will work with them)

• Documentation - It’s time for PyPDF2 to get its own documentation since it has grown much since the original
pyPdf

• A FAQ to answer common questions

40.28 Version 1.18, 2013-08-19

• Fixed a bug where older verions of objects were incorrectly added to the cache, resulting in outdated or missing
pages, images, and other objects (from speedplane)

• Fixed a bug in parsing the xref table where new xref values were overwritten; also cleaned up code (from speed-
plane)

• New method mergeRotatedAroundPointPage which merges a page while rotating it around a point (from speed-
plane)

• Updated Destination syntax to respect PDF 1.6 specifications (from jamma313)

• Prevented infinite loop when a PdfFileReader object was instantiated with an empty file (from Jerome Nexedi)

Other Changes:

• Downloads now available via PyPI

• Installation through pip library is fixed

174 Chapter 40. Changelog of PyPDF2 1.X

PyPDF2

40.29 Version 1.17, 2013-07-25

• Removed one (from pdf.py) of the two Destination classes. Both classes had the same name, but were slightly
different in content, causing some errors. (from Janne Vanhala)

• Corrected and Expanded README file to demonstrate PdfFileMerger

• Added filter for LZW encoded streams (from Michal Horejsek)

• PyPDF2 issue tracker enabled on Github to allow community discussion and collaboration

40.30 Versions -1.16, -2013-06-30

• Note: This ChangeLog has not been kept up-to-date for a while. Hopefully we can keep better track of it from
now on. Some of the changes listed here come from previous versions 1.14 and 1.15; they were only vaguely
defined. With the new _version.py file we should have more structured and better documented versioning from
now on.

• Defined PyPDF2.__version__

• Fixed encrypt() method (from Martijn The)

• Improved error handling on PDFs with truncated streams (from cecilkorik)

• Python 3 support (from kushal-kumaran)

• Fixed example code in README (from Jeremy Bethmont)

• Fixed an bug caused by DecimalError Exception (from Adam Morris)

• Many other bug fixes and features by:

jeansch Anton Vlasenko Joseph Walton Jan Oliver Oelerich Fabian Henze And any others I missed. Thanks for
contributing!

40.31 Version 1.13, 2010-12-04

• Fixed a typo in code for reading a “\b” escape character in strings.

• Improved __repr__ in FloatObject.

• Fixed a bug in reading octal escape sequences in strings.

• Added getWidth and getHeight methods to the RectangleObject class.

• Fixed compatibility warnings with Python 2.4 and 2.5.

• Added addBlankPage and insertBlankPage methods on PdfFileWriter class.

• Fixed a bug with circular references in page’s object trees (typically annotations) that prevented correctly writing
out a copy of those pages.

• New merge page functions allow application of a transformation matrix.

• To all patch contributors: I did a poor job of keeping this ChangeLog up-to-date for this release, so I am missing
attributions here for any changes you submitted. Sorry! I’ll do better in the future.

40.29. Version 1.17, 2013-07-25 175

PyPDF2

40.32 Version 1.12, 2008-09-02

• Added support for XMP metadata.

• Fix reading files with xref streams with multiple /Index values.

• Fix extracting content streams that use graphics operators longer than 2 characters. Affects merging PDF files.

40.33 Version 1.11, 2008-05-09

• Patch from Hartmut Goebel to permit RectangleObjects to accept NumberObject or FloatObject values.

• PDF compatibility fixes.

• Fix to read object xref stream in correct order.

• Fix for comments inside content streams.

40.34 Version 1.10, 2007-10-04

• Text strings from PDF files are returned as Unicode string objects when pyPdf determines that they can be
decoded (as UTF-16 strings, or as PDFDocEncoding strings). Unicode objects are also written out when
necessary. This means that string objects in pyPdf can be either generic.ByteStringObject instances, or
generic.TextStringObject instances.

• The extractText method now returns a unicode string object.

• All document information properties now return unicode string objects. In the event that a document provides
docinfo properties that are not decoded by pyPdf, the raw byte strings can be accessed with an “_raw” property
(ie. title_raw rather than title)

• generic.DictionaryObject instances have been enhanced to be easier to use. Values coming out of dictionary
objects will automatically be de-referenced (.getObject will be called on them), unless accessed by the new
“raw_get” method. DictionaryObjects can now only contain PdfObject instances (as keys and values), making it
easier to debug where non-PdfObject values (which cannot be written out) are entering dictionaries.

• Support for reading named destinations and outlines in PDF files. Original patch by Ashish Kulkarni.

• Stream compatibility reading enhancements for malformed PDF files.

• Cross reference table reading enhancements for malformed PDF files.

• Encryption documentation.

• Replace some “assert” statements with error raising.

• Minor optimizations to FlateDecode algorithm increase speed when using PNG predictors.

176 Chapter 40. Changelog of PyPDF2 1.X

PyPDF2

40.35 Version 1.9, 2006-12-15

• Fix several serious bugs introduced in version 1.8, caused by a failure to run through our PDF test suite before
releasing that version.

• Fix bug in NullObject reading and writing.

40.36 Version 1.8, 2006-12-14

• Add support for decryption with the standard PDF security handler. This allows for decrypting PDF files given
the proper user or owner password.

• Add support for encryption with the standard PDF security handler.

• Add new pythondoc documentation.

• Fix bug in ASCII85 decode that occurs when whitespace exists inside the two terminating characters of the
stream.

40.37 Version 1.7, 2006-12-10

• Fix a bug when using a single page object in two PdfFileWriter objects.

• Adjust PyPDF to be tolerant of whitespace characters that don’t belong during a stream object.

• Add documentInfo property to PdfFileReader.

• Add numPages property to PdfFileReader.

• Add pages property to PdfFileReader.

• Add extractText function to PdfFileReader.

40.38 Version 1.6, 2006-06-06

• Add basic support for comments in PDF files. This allows us to read some ReportLab PDFs that could not be
read before.

• Add “auto-repair” for finding xref table at slightly bad locations.

• New StreamObject backend, cleaner and more powerful. Allows the use of stream filters more easily, including
compressed streams.

• Add a graphics state push/pop around page merges. Improves quality of page merges when one page’s content
stream leaves the graphics in an abnormal state.

• Add PageObject.compressContentStreams function, which filters all content streams and compresses them. This
will reduce the size of PDF pages, especially after they could have been decompressed in a mergePage operation.

• Support inline images in PDF content streams.

• Add support for using .NET framework compression when zlib is not available. This does not make pyPdf
compatible with IronPython, but it is a first step.

• Add support for reading the document information dictionary, and extracting title, author, subject, producer and
creator tags.

40.35. Version 1.9, 2006-12-15 177

PyPDF2

• Add patch to support NullObject and multiple xref streams, from Bradley Lawrence.

40.39 Version 1.5, 2006-01-28

• Fix a bug where merging pages did not work in “no-rename” cases when the second page has an array of content
streams.

• Remove some debugging output that should not have been present.

40.40 Version 1.4, 2006-01-27

• Add capability to merge pages from multiple PDF files into a single page using the PageObject.mergePage func-
tion. See example code (README or web site) for more information.

• Add ability to modify a page’s MediaBox, CropBox, BleedBox, TrimBox, and ArtBox properties through Pa-
geObject. See example code (README or web site) for more information.

• Refactor pdf.py into multiple files: generic.py (contains objects like NameObject, DictionaryObject), filters.py
(contains filter code), utils.py (various). This does not affect importing PdfFileReader or PdfFileWriter.

• Add new decoding functions for standard PDF filters ASCIIHexDecode and ASCII85Decode.

• Change url and download_url to refer to new pybrary.net web site.

40.41 Version 1.3, 2006-01-23

• Fix new bug introduced in 1.2 where PDF files with \r line endings did not work properly anymore. A new test
suite developed with various PDF files should prevent regression bugs from now on.

• Fix a bug where inheriting attributes from page nodes did not work.

40.42 Version 1.2, 2006-01-23

• Improved support for files with CRLF-based line endings, fixing a common reported problem stating “assertion
error: assert line == “%%EOF””.

• Software author/maintainer is now officially a proud married person, which is sure to result in better software. . .
somehow.

40.43 Version 1.1, 2006-01-18

• Add capability to rotate pages.

• Improved PDF reading support to properly manage inherited attributes from /Type=/Pages nodes. This means
that page groups that are rotated or have different media boxes or whatever will now work properly.

• Added PDF 1.5 support. Namely cross-reference streams and object streams. This release can mangle Adobe’s
PDFReference16.pdf successfully.

178 Chapter 40. Changelog of PyPDF2 1.X

PyPDF2

40.44 Version 1.0, 2006-01-17

• First distutils-capable true public release. Supports a wide variety of PDF files that I found sitting around on my
system.

• Does not support some PDF 1.5 features, such as object streams, cross-reference streams.

40.44. Version 1.0, 2006-01-17 179

PyPDF2

180 Chapter 40. Changelog of PyPDF2 1.X

CHAPTER

FORTYONE

PROJECT GOVERNANCE

This document describes how the PyPDF2 project is managed. It describes the different actors, their roles, and the
responsibilities they have.

41.1 Terminology

• The project is PyPDF2 - a free and open-source pure-python PDF library capable of splitting, merging, crop-
ping, and transforming the pages of PDF files. It includes the code, issues, and discussions on GitHub, and the
documentation on ReadTheDocs, the package on PyPI, and the website on GitHub.

• A maintainer is a person who has technical permissions to change one or more part of the projects. It is a person
who is driven to keep the project running and improving.

• A contributor is a person who contributes to the project. That could be through writing code - in the best case
through forking and creating a pull request, but that is up to the maintainer. Other contributors describe issues,
help to ask questions on existing issues to make them easier to answer, participate in discussions, and help to
improve the documentation. Contributors are similar to maintainers, but without technial permissions.

• A user is a person who imports PyPDF2 into their code. All PyPDF2 users are developers, but not developers
who know the internals of PyPDF2. They only use the public interface of PyPDF2. They will likely have less
knowledge about PDF than contributors.

• The community is all of that - the users, the contributors, and the maintainers.

41.2 Governance, Leadership, and Steering PyPDF2 forward

PyPDF2 is a free and open source project with over 100 contributors and likely (way) more than 1000 users.

As PyPDF2 does not have any formal relationship with any company and no funding, all the work done by the commu-
nity are voluntary contributions. People don’t get paid, but choose to spend their free time to create software of which
many more are profiting. This has to be honored and respected.

Despite such a big community, the project was dormant from 2016 to 2022. There were still questions asked, issues
reported, and pull requests created. But the maintainer didn’t have the time to move PyPDF2 forward. During that
time, nobody else stepped up to become the new maintainer.

For this reason, PyPDF2 has the Benevolent Dictator governance model. The benevolent dictator is a maintainer with
all technical permissions - most importantly the permission to push new PyPDF2 versions on PyPI.

Being benevolent, the benevolent dictator listens for decisions to the community and tries their best to make decisions
from which the overall community profits - the current one and the potential future one. Being a dictator, the benev-
olent dictator always has the power and the right to make decisions on their own - also against some members of the
community.

181

https://github.com/py-pdf/PyPDF2
https://pypdf2.readthedocs.io/en/latest/
https://pypdf2.readthedocs.io/en/latest/
https://pypi.org/project/PyPDF2/
https://py-pdf.github.io/PyPDF2/dev/bench/

PyPDF2

As PyPDF2 is free software, parts of the community can split off (fork the code) and create a new community. This
should limit the harm a bad benevolent dictator can do.

41.3 Project Language

The project language is (american) English. All documentation and issues must be written in English to ensure that
the community can understand it.

We appreciate the fact that large parts of the community don’t have English as their mother tongue. We try our best to
understand others - automatic translators might help.

41.4 Expectations

The community can expect the following:

• The benevolent dictator tries their best to make decisions from which the overall community profits. The
benevolent dictator is aware that his/her decisions can shape the overall community. Once the benevolent dictator
notices that she/he doesn’t have the time to advance PyPDF2, he/she looks for a new benevolent dictator. As it is
expected that the benevolent dictator will step down at some point of their choice (hopefully before their death),
it is NOT a benevolent dictator for life (BDFL).

• Every maintainer (including the benevolent dictator) is aware of their permissions and the harm they could do.
They value security and ensure that the project is not harmed. They give their technical permissions back if they
don’t need them any longer. Any long-time contributor can become a maintainer. Maintainers can - and should!
- step down from their role when they realize that they can no longer commit that time. Their contribution will
be honored in the History of PyPDF2.

• Every contributor is aware that the time of maintainers and the benevolent dictator is limited. Short pull requests
that briefly describe the solved issue and have a unit test have a higher chance to get merged soon - simply because
it’s easier for maintainers to see that the contribution will not harm the overall project. Their contributions are
documented in the git history and in the public issues. Let us know if you would appriciate something else!

• Every community member uses a respectful language. We are all human, we get upset about things we care and
other things than what’s visible on the internet go on in our live. PyPDF2 does not pay its contributors - keep all
of that in mind when you interact with others. We are here because we want to help others.

41.4.1 Issues and Discussions

An issue is any technical description that aims at bringing PyPDF2 forward:

• Bugs tickets: Something went wrong because PyPDF2 developers made a mistake.

• Feature requests: PyPDF2 does not support all features of the PDF specifications. There are certainly also
convenience methods that would help users a lot.

• Robustness requests: There are many broken PDFs around. In some cases, we can deal with that. It’s kind of a
mixture between a bug ticket and a feature request.

• Performance tickets: PyPDF2 could be faster - let us know about your specific scenario.

Any comment that is in those technial descriptions which is not helping the discussion can be deleted. This is especially
true for “me too” comments on bugs or “bump” comments for desired features. People can express this with / reactions.

Discussions are open. No comments will be deleted there - except if they are clearly unrelated spam or only try to insult
people (luckily, the community was very respectful so far)

182 Chapter 41. Project Governance

https://translate.google.com/
https://github.com/py-pdf/PyPDF2/discussions/798
https://github.com/py-pdf/PyPDF2/discussions

PyPDF2

41.4.2 Releases

The maintainers follow semantic versioning. Most importantly, that means that breaking changes will have a major
version bump.

Be aware that unintentional breaking changes might still happen. The PyPDF2 maintainers do their best to fix that in
a timely manner - please report such issues!

41.5 People

• Martin Thoma is benevolent dictator since April 2022.

• Maintainers:

– Matthew Stamy (mstamy2) was the benevolent dictator for a long time. He still is around on GitHub once
in a while and has permissions on PyPI and GitHub.

– Matthew Peveler (MasterOdin) is a maintainer on GitHub.

41.5. People 183

https://semver.org/
https://github.com/py-pdf/PyPDF2/issues

PyPDF2

184 Chapter 41. Project Governance

CHAPTER

FORTYTWO

HISTORY OF PYPDF2

42.1 The Origins: pyPdf (2005-2010)

In 2005, Mathieu Fenniak launched pyPdf “as a PDF toolkit. . . ” focused on

• document manipulation: by-page splitting, concatenation, and merging;

• document introspection;

• page cropping; and

• document encryption and decryption.

The last release of PyPI was pyPdf 1.13 in 2010.

42.2 PyPDF2 is born (2011-2016)

At the end of 2011, after consultation with Mathieu and others, Phaseit sponsored PyPDF2 as a fork of pyPdf on GitHub.
The initial impetus was to handle a wider range of input PDF instances; Phaseit’s commercial work often encounters
PDF instances “in the wild” that it needs to manage (mostly concatenate and paginate), but that deviate so much from
PDF standards that pyPdf can’t read them. PyPDF2 reads a considerably wider range of real-world PDF instances.

Neither pyPdf nor PyPDF2 aims to be universal, that is, to provide all possible PDF-related functionality. Note that
the similar-appearing pyfpdf of Mariano Reingart is most comparable to ReportLab, in that both ReportLab and pyfpdf
emphasize document generation. Interestingly enough, pyfpdf builds in a basic HTML→PDF converter while PyPDF2
has no knowledge of HTML.

So what is PyPDF2 truly about? Think about popular pdftk for a moment. PyPDF2 does what pdftk does, and it does
so within your current Python process, and it handles a wider range of variant PDF formats [explain]. PyPDF2 has its
own FAQ to answer other questions that have arisen.

The Reddit /r/python crowd chatted obliquely and briefly about PyPDF2 in March 2012.

185

https://mathieu.fenniak.net/
https://pypi.org/project/pyPdf/#history
https://github.com/reingart/pyfpdf
https://www.reportlab.com/software/opensource/rl-toolkit/
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.reddit.com/r/Python/comments/qsvfm/pypdf2_updates_pypdf_pypdf2_is_an_opensource/

PyPDF2

42.3 PyPDF3 and PyPDF4 (2018 - 2022)

Two approaches were made to get PyPDF2 active again: PyPDF3 and PyPDF4.

PyPDF3 had it’s first release in 2018 and its last one in February 2022. It never got the user base from PyPDF2.

PyPDF4 only had one release in 2018.

42.4 PyPDF2: Reborn (2022-Today)

Martin Thoma took over maintenance of PyPDF2 in April 2022.

186 Chapter 42. History of PyPDF2

CHAPTER

FORTYTHREE

CONTRIBUTORS

PyPDF2 had a lot of contributors since it started with pyPdf in 2005. We are a free software project without any company
affiliation. We cannot pay contributors, but we do value their contributions. A lot of time, effort, and expertise went
into this project. With this list, we recognize those awesome people

The list is definitely not complete. You can find more contributors via the git history and GitHubs ‘Contributors’
feature.

43.1 Contributors to the pyPdf / PyPDF2 project

• DL6ER

• ediamondscience

• Górny, Michał

• Hale, Joseph

• JianzhengLuo

• Karvonen, Harry

• KourFrost

• Lightup1

• Mérino, Antoine

• Perrensen, Olsen

• Pinheiro, Arthur

• programmarchy

• pubpub-zz: involved in community development

• Rogmann, Sascha

• sietzeberends

• Stüber, Timo

• Thoma, Martin: Maintainer of PyPDF2 since April 2022. I hope to build a great community with many awesome
contributors. LinkedIn | StackOverflow | Blog

• WevertonGomes

• ztravis

187

https://github.com/py-pdf/PyPDF2/graphs/contributors
https://github.com/py-pdf/PyPDF2/graphs/contributors
https://github.com/DL6ER
https://github.com/ediamondscience
https://github.com/mgorny
https://github.com/thehale
https://github.com/JianzhengLuo
https://github.com/Hatell/
https://github.com/KourFrost
https://github.com/Lightup1
https://github.com/Merinorus
https://github.com/olsonperrensen
https://github.com/xilopaint
https://github.com/programmarchy
https://github.com/pubpub-zz
https://github.com/srogmann
https://github.com/sietzeberends
https://github.com/omit66
https://github.com/MartinThoma
https://www.linkedin.com/in/martin-thoma/
https://stackoverflow.com/users/562769/martin-thoma
https://martin-thoma.com/
https://github.com/WevertonGomesCosta

PyPDF2

43.2 Adding a new contributor

Contributors are:

• Anybody who has an commit in main - no matter how big/small or how many. Also if it’s via co-authored-by.

• People who opened helpful issues: (1) Bugs: with complete MCVE (2) Well-described feature requests (3)
Potentially some more. The maintainers of PyPDF2 have the last call on that one.

• Community work: This is exceptional. If the maintainers of PyPDF2 see people being super helpful in answering
issues / discussions or being very active on Stackoverflow, we also consider them being contributors to PyPDF2.

Contributors can add themselves or ask via an Github Issue to be added.

Please use the following format:

* Last name, First name: 140-characters of text; links to linkedin / github / other␣
→˓profiles and personal pages are ok

OR

* GitHub Username: 140-characters of text; links to linkedin / github / other profiles␣
→˓and personal pages are ok

and add the entry in the alphabetical order. People who . The 140 characters are everything visible after the Name:.

Please don’t use images.

188 Chapter 43. Contributors

CHAPTER

FORTYFOUR

PYPDF2 VS X

PyPDF2 is a free and open source pure-python PDF library capable of splitting, merging, cropping, and transforming
the pages of PDF files. It can also add custom data, viewing options, and passwords to PDF files. PyPDF2 can retrieve
text and metadata from PDFs as well.

44.1 PyMuPDF and PikePDF

PyMuPDF is a Python binding to MuPDF and PikePDF is the Python binding to QPDF.

While both are excellent libraries for various use-cases, using them is not always possible even when they support the
use-case. Both of them are powered by C libraries which makes installation harder and might cause security concerns.
For MuPDF you might also need to buy a commercial license.

A core feature of PyPDF2 is that it’s pure Python. That means there is no C dependency. It has been used for over 10
years and for this reason a lot of support via StackOverflow and examples on the internet.

44.2 pyPDF

PyPDF2 was forked from pyPDF. pyPDF has been unmaintained for a long time.

44.3 PyPDF3 and PyPDF4

Developing and maintaining open source software is extremely time-intensive and in the case of PyPDF2 not paid at
all. Having a continuous support is hard.

PyPDF2 was initially released in 2012 on PyPI and received releases until 2016. From 2016 to 2022 there was no
update - but people were still using it.

As PyPDF2 is free software, there were attempts to fork it and continue the development. PyPDF3 was first released
in 2018 and still receives updates. PyPDF4 has only one release from 2018.

I, Martin Thoma, the current maintainer of PyPDF2, hope that we can bring the community back to one path of devel-
opment. Let’s see.

189

https://en.wikipedia.org/wiki/Free_software
https://pypi.org/project/PyMuPDF/
https://mupdf.com/
https://pypi.org/project/pikepdf/
https://github.com/qpdf/qpdf

PyPDF2

44.4 pdfrw and pdfminer

I don’t have experience with either of those libraries. Please add a comparison if you know PyPDF2 and pdfrw or
pdfminer.six!

Please be aware that there is also pdfminer which is not maintained. Then there is pdfrw2 which doesn’t have a large
community behind it.

And there are more:

• pdfplumber

44.5 Document Generation

There are (Python) tools to generate PDF documents. PyPDF2 is not one of them.

190 Chapter 44. PyPDF2 vs X

https://pypi.org/project/pdfrw/
https://pypi.org/project/pdfminer.six/
https://pypi.org/project/pdfminer/
https://pypi.org/project/pdfrw2/
https://pypi.org/project/pdfplumber/
https://github.com/py-pdf/awesome-pdf#generators

CHAPTER

FORTYFIVE

FREQUENTLY-ASKED QUESTIONS

45.1 How is PyPDF2 related to pyPdf?

PyPDF2 is a fork from the no-longer-maintained pyPdf approved by the latter’s founder.

45.2 Which Python versions are supported?

PyPDF2 2.0+ supports Python 3.6 and later. PyPDF2 1.27.10 supported Python 2.7 to 3.10.

45.3 Who uses PyPDF2?

pyPdf is vendored into several projects. That means the code of pyPdf was copied into that project.

Projects that depend on PyPDF2:

• Camelot: A Python library to extract tabular data from PDFs

• edi: Electronic Data Interchange modules

• amazon-textract-textractor: Analyze documents with Amazon Textract and generate output in multiple formats.

• maigret: Collect a dossier on a person by username from thousands of sites

• deda: tracking Dots Extraction, Decoding and Anonymisation toolkit

• opencanary

• Document Conversions

– rst2pdf

– xhtml2pdf

– doc2text

• pdfalyzer: A PDF analysis tool for visualizing the inner tree-like data structure of a PDF in spectacularly large and
colorful diagrams as well as scanning the binary streams embedded in the PDF for hidden potentially malicious
content.

191

https://github.com/Buyanbat/XacCRM/tree/ee78e8df967182f661b6494a86444501e7d89c8f/report/pyPdf
https://github.com/MyBook/calibre/tree/ca1efe3c21f6553e096dab745b3cdeb36244a5a9/src/pyPdf
https://github.com/Giacomo-De-Florio-Dev/Make_Your_PDF_Safe/tree/ec439f92243d12d54ae024668792470c6b40ee96/MakeYourPDFsafe_V1.3/PyPDF2
https://github.com/camelot-dev/camelot
https://github.com/OCA/edi
https://github.com/aws-samples/amazon-textract-textractor/blob/42444b08c672607eadbdcd64f3c5adb2d85383de/helper/setup.py
https://github.com/soxoj/maigret
https://github.com/dfd-tud/deda
https://github.com/thinkst/opencanary
https://github.com/rst2pdf/rst2pdf
https://github.com/xhtml2pdf/xhtml2pdf
https://github.com/jlsutherland/doc2text
https://pypi.org/project/pdfalyzer/

PyPDF2

45.4 How do I cite PyPDF2?

In BibTeX format:

@misc{pypdf2,
title = {The {PyPDF2} library},
author = {Mathieu Fenniak and

Matthew Stamy and
pubpub-zz and
Martin Thoma and
Matthew Peveler and
exiledkingcc and {PyPDF2 Contributors}},

year = {2022},
url = {https://pypi.org/project/PyPDF2/}
note = {See https://pypdf2.readthedocs.io/en/latest/meta/CONTRIBUTORS.html for␣
→˓all contributors}
}

192 Chapter 45. Frequently-Asked Questions

CHAPTER

FORTYSIX

INDICES AND TABLES

• genindex

• modindex

• search

Note: This page is about PyPDF2. PyPDF2 is deprecated, please use pypdf

193

https://pypdf.readthedocs.io/en/latest/user/migration-1-to-2.html

PyPDF2

194 Chapter 46. Indices and tables

INDEX

A
A0 (PyPDF2.PaperSize attribute), 117
A1 (PyPDF2.PaperSize attribute), 117
A2 (PyPDF2.PaperSize attribute), 117
A3 (PyPDF2.PaperSize attribute), 117
A4 (PyPDF2.PaperSize attribute), 117
A5 (PyPDF2.PaperSize attribute), 117
A6 (PyPDF2.PaperSize attribute), 117
A7 (PyPDF2.PaperSize attribute), 117
A8 (PyPDF2.PaperSize attribute), 117
add_annotation() (PyPDF2.PdfWriter method), 74
add_attachment() (PyPDF2.PdfWriter method), 74
add_blank_page() (PyPDF2.PdfWriter method), 74
add_bookmark() (PyPDF2.PdfMerger method), 85
add_bookmark() (PyPDF2.PdfWriter method), 74
add_bookmark_destination() (PyPDF2.PdfWriter

method), 74
add_bookmark_dict() (PyPDF2.PdfWriter method),

74
add_filtered_articles() (PyPDF2.PdfWriter

method), 74
add_js() (PyPDF2.PdfWriter method), 74
add_link() (PyPDF2.PdfWriter method), 74
add_metadata() (PyPDF2.PdfMerger method), 85
add_metadata() (PyPDF2.PdfWriter method), 75
add_named_destination() (PyPDF2.PdfMerger

method), 85
add_named_destination() (PyPDF2.PdfWriter

method), 75
add_named_destination_array()

(PyPDF2.PdfWriter method), 75
add_named_destination_object()

(PyPDF2.PdfWriter method), 75
add_outline() (PyPDF2.PdfWriter method), 75
add_outline_item() (PyPDF2.PdfMerger method), 86
add_outline_item() (PyPDF2.PdfWriter method), 75
add_outline_item_destination()

(PyPDF2.PdfWriter method), 75
add_outline_item_dict() (PyPDF2.PdfWriter

method), 75
add_page() (PyPDF2.PdfWriter method), 76
add_transformation() (PyPDF2._page.PageObject

method), 89
add_uri() (PyPDF2.PdfWriter method), 76
addAttachment() (PyPDF2.PdfWriter method), 73
addBlankPage() (PyPDF2.PdfWriter method), 73
addBookmark() (PyPDF2.PdfMerger method), 85
addBookmark() (PyPDF2.PdfWriter method), 73
addBookmarkDestination() (PyPDF2.PdfWriter

method), 73
addBookmarkDict() (PyPDF2.PdfWriter method), 73
additional_actions (PyPDF2.generic.Field prop-

erty), 109
additionalActions (PyPDF2.generic.Field property),

109
addJS() (PyPDF2.PdfWriter method), 73
addLink() (PyPDF2.PdfWriter method), 73
addMetadata() (PyPDF2.PdfMerger method), 85
addMetadata() (PyPDF2.PdfWriter method), 73
addNamedDestination() (PyPDF2.PdfMerger

method), 85
addNamedDestination() (PyPDF2.PdfWriter method),

73
addNamedDestinationObject() (PyPDF2.PdfWriter

method), 73
addPage() (PyPDF2.PdfWriter method), 73
addTransformation() (PyPDF2._page.PageObject

method), 89
addURI() (PyPDF2.PdfWriter method), 73
alternate_name (PyPDF2.generic.Field property), 109
altName (PyPDF2.generic.Field property), 109
AnnotationBuilder (class in PyPDF2.generic), 113
annotations (PyPDF2._page.PageObject property), 89
append() (PyPDF2.PdfMerger method), 86
append() (PyPDF2.PdfWriter method), 76
append_pages_from_reader() (PyPDF2.PdfWriter

method), 76
appendPagesFromReader() (PyPDF2.PdfWriter

method), 76
apply_on() (PyPDF2.Transformation method), 97
artBox (PyPDF2._page.PageObject property), 89
artbox (PyPDF2._page.PageObject property), 89
author (PyPDF2.DocumentInformation property), 99
author_raw (PyPDF2.DocumentInformation property),

195

PyPDF2

99

B
bleedBox (PyPDF2._page.PageObject property), 89
bleedbox (PyPDF2._page.PageObject property), 89
bottom (PyPDF2.generic.Destination property), 105
bottom (PyPDF2.generic.RectangleObject property),

107

C
C4 (PyPDF2.PaperSize attribute), 117
cache_get_indirect_object() (PyPDF2.PdfReader

method), 67
cache_indirect_object() (PyPDF2.PdfReader

method), 67
cacheGetIndirectObject() (PyPDF2.PdfReader

method), 67
cacheIndirectObject() (PyPDF2.PdfReader

method), 67
childs (PyPDF2.generic.Destination attribute), 105
clean_page() (PyPDF2.PdfWriter method), 77
clone_document_from_reader() (PyPDF2.PdfWriter

method), 77
clone_reader_document_root() (PyPDF2.PdfWriter

method), 77
cloneDocumentFromReader() (PyPDF2.PdfWriter

method), 77
cloneReaderDocumentRoot() (PyPDF2.PdfWriter

method), 77
close() (PyPDF2.PdfMerger method), 86
close() (PyPDF2.PdfWriter method), 77
color (PyPDF2.generic.Destination property), 105
compress() (PyPDF2.Transformation static method), 97
compress_content_streams()

(PyPDF2._page.PageObject method), 90
compressContentStreams()

(PyPDF2._page.PageObject method), 90
create_blank_page() (PyPDF2._page.PageObject

static method), 90
createBlankPage() (PyPDF2._page.PageObject static

method), 90
creation_date (PyPDF2.DocumentInformation prop-

erty), 99
creation_date_raw (PyPDF2.DocumentInformation

property), 99
creator (PyPDF2.DocumentInformation property), 99
creator_raw (PyPDF2.DocumentInformation prop-

erty), 99
cropBox (PyPDF2._page.PageObject property), 90
cropbox (PyPDF2._page.PageObject property), 90
custom_properties (PyPDF2.xmp.XmpInformation

property), 101

D
dc_contributor (PyPDF2.xmp.XmpInformation prop-

erty), 101
dc_coverage (PyPDF2.xmp.XmpInformation property),

101
dc_creator (PyPDF2.xmp.XmpInformation property),

101
dc_date (PyPDF2.xmp.XmpInformation property), 101
dc_description (PyPDF2.xmp.XmpInformation prop-

erty), 101
dc_format (PyPDF2.xmp.XmpInformation property),

101
dc_identifier (PyPDF2.xmp.XmpInformation prop-

erty), 101
dc_language (PyPDF2.xmp.XmpInformation property),

101
dc_publisher (PyPDF2.xmp.XmpInformation prop-

erty), 101
dc_relation (PyPDF2.xmp.XmpInformation property),

101
dc_rights (PyPDF2.xmp.XmpInformation property),

101
dc_source (PyPDF2.xmp.XmpInformation property),

102
dc_subject (PyPDF2.xmp.XmpInformation property),

102
dc_title (PyPDF2.xmp.XmpInformation property), 102
dc_type (PyPDF2.xmp.XmpInformation property), 102
decode_permissions() (PyPDF2.PdfReader method),

67
decrypt() (PyPDF2.PdfReader method), 67
default_value (PyPDF2.generic.Field property), 109
defaultValue (PyPDF2.generic.Field property), 109
dest_array (PyPDF2.generic.Destination property),

105
Destination (class in PyPDF2.generic), 105
documentInfo (PyPDF2.PdfReader property), 67
DocumentInformation (class in PyPDF2), 99

E
encrypt() (PyPDF2.PdfWriter method), 77
ensureIsNumber() (PyPDF2.generic.RectangleObject

method), 107
extract_text() (PyPDF2._page.PageObject method),

90
extract_xform_text() (PyPDF2._page.PageObject

method), 91
extractText() (PyPDF2._page.PageObject method),

90

F
Field (class in PyPDF2.generic), 109
field_type (PyPDF2.generic.Field property), 109
fieldType (PyPDF2.generic.Field property), 109

196 Index

PyPDF2

find_bookmark() (PyPDF2.PdfMerger method), 86
find_bookmark() (PyPDF2.PdfWriter method), 78
find_outline_item() (PyPDF2.PdfMerger method),

86
find_outline_item() (PyPDF2.PdfWriter method),

78
Fit (class in PyPDF2.generic), 115
fit() (PyPDF2.generic.Fit class method), 115
fit_box() (PyPDF2.generic.Fit class method), 115
fit_box_horizontally() (PyPDF2.generic.Fit class

method), 115
fit_box_vertically() (PyPDF2.generic.Fit class

method), 115
fit_horizontally() (PyPDF2.generic.Fit class

method), 115
fit_rectangle() (PyPDF2.generic.Fit class method),

115
fit_vertically() (PyPDF2.generic.Fit class method),

115
flags (PyPDF2.generic.Field property), 109
font_format (PyPDF2.generic.Destination property),

105
free_text() (PyPDF2.generic.AnnotationBuilder static

method), 113

G
get_contents() (PyPDF2._page.PageObject method),

91
get_destination_page_number()

(PyPDF2.PdfReader method), 68
get_element() (PyPDF2.xmp.XmpInformation

method), 102
get_fields() (PyPDF2.PdfReader method), 68
get_form_text_fields() (PyPDF2.PdfReader

method), 69
get_named_dest_root() (PyPDF2.PdfWriter method),

78
get_nodes_in_namespace()

(PyPDF2.xmp.XmpInformation method),
102

get_object() (PyPDF2.PdfReader method), 69
get_object() (PyPDF2.PdfWriter method), 78
get_outline_root() (PyPDF2.PdfWriter method), 78
get_page() (PyPDF2.PdfWriter method), 78
get_page_number() (PyPDF2.PdfReader method), 69
get_reference() (PyPDF2.PdfWriter method), 78
get_threads_root() (PyPDF2.PdfWriter method), 79
getContents() (PyPDF2._page.PageObject method),

91
getDestArray() (PyPDF2.generic.Destination

method), 105
getDestinationPageNumber() (PyPDF2.PdfReader

method), 68
getDocumentInfo() (PyPDF2.PdfReader method), 68

getElement() (PyPDF2.xmp.XmpInformation method),
102

getFields() (PyPDF2.PdfReader method), 68
getFormTextFields() (PyPDF2.PdfReader method),

68
getHeight() (PyPDF2.generic.RectangleObject

method), 107
getIsEncrypted() (PyPDF2.PdfReader method), 68
getLowerLeft() (PyPDF2.generic.RectangleObject

method), 107
getLowerLeft_x() (PyPDF2.generic.RectangleObject

method), 107
getLowerLeft_y() (PyPDF2.generic.RectangleObject

method), 107
getLowerRight() (PyPDF2.generic.RectangleObject

method), 107
getLowerRight_x() (PyPDF2.generic.RectangleObject

method), 107
getLowerRight_y() (PyPDF2.generic.RectangleObject

method), 107
getNamedDestinations() (PyPDF2.PdfReader

method), 68
getNamedDestRoot() (PyPDF2.PdfWriter method), 78
getNodesInNamespace()

(PyPDF2.xmp.XmpInformation method),
102

getNumPages() (PyPDF2.PdfReader method), 68
getNumPages() (PyPDF2.PdfWriter method), 78
getObject() (PyPDF2.PdfReader method), 68
getObject() (PyPDF2.PdfWriter method), 78
getOutlineRoot() (PyPDF2.PdfWriter method), 78
getOutlines() (PyPDF2.PdfReader method), 68
getPage() (PyPDF2.PdfReader method), 68
getPage() (PyPDF2.PdfWriter method), 78
getPageLayout() (PyPDF2.PdfReader method), 68
getPageLayout() (PyPDF2.PdfWriter method), 78
getPageMode() (PyPDF2.PdfReader method), 68
getPageMode() (PyPDF2.PdfWriter method), 78
getPageNumber() (PyPDF2.PdfReader method), 68
getReference() (PyPDF2.PdfWriter method), 78
getText() (PyPDF2.DocumentInformation method), 99
getUpperLeft() (PyPDF2.generic.RectangleObject

method), 107
getUpperLeft_x() (PyPDF2.generic.RectangleObject

method), 107
getUpperLeft_y() (PyPDF2.generic.RectangleObject

method), 107
getUpperRight() (PyPDF2.generic.RectangleObject

method), 107
getUpperRight_x() (PyPDF2.generic.RectangleObject

method), 107
getUpperRight_y() (PyPDF2.generic.RectangleObject

method), 107
getWidth() (PyPDF2.generic.RectangleObject

Index 197

PyPDF2

method), 107
getXmpMetadata() (PyPDF2.PdfReader method), 68

H
hash_value_data() (PyPDF2._page.PageObject

method), 91
height (PyPDF2.generic.RectangleObject property),

107

I
images (PyPDF2._page.PageObject property), 91
indices() (PyPDF2.PageRange method), 111
indirect_ref (PyPDF2._page.PageObject property),

92
insert_blank_page() (PyPDF2.PdfWriter method),

79
insert_page() (PyPDF2.PdfWriter method), 79
insertBlankPage() (PyPDF2.PdfWriter method), 79
insertPage() (PyPDF2.PdfWriter method), 79
is_encrypted (PyPDF2.PdfReader property), 69
isEncrypted (PyPDF2.PdfReader property), 69

K
kids (PyPDF2.generic.Field property), 109

L
left (PyPDF2.generic.Destination property), 105
left (PyPDF2.generic.RectangleObject property), 107
line() (PyPDF2.generic.AnnotationBuilder static

method), 113
link() (PyPDF2.generic.AnnotationBuilder static

method), 114
lower_left (PyPDF2.generic.RectangleObject prop-

erty), 108
lower_right (PyPDF2.generic.RectangleObject prop-

erty), 108
lowerLeft (PyPDF2.generic.RectangleObject property),

108
lowerRight (PyPDF2.generic.RectangleObject prop-

erty), 108

M
mapping_name (PyPDF2.generic.Field property), 110
mappingName (PyPDF2.generic.Field property), 109
matrix (PyPDF2.Transformation property), 98
mediaBox (PyPDF2._page.PageObject property), 92
mediabox (PyPDF2._page.PageObject property), 92
merge() (PyPDF2.PdfMerger method), 86
merge() (PyPDF2.PdfWriter method), 79
merge_page() (PyPDF2._page.PageObject method), 94
mergePage() (PyPDF2._page.PageObject method), 92
mergeRotatedPage() (PyPDF2._page.PageObject

method), 92

mergeRotatedScaledPage()
(PyPDF2._page.PageObject method), 92

mergeRotatedScaledTranslatedPage()
(PyPDF2._page.PageObject method), 92

mergeRotatedTranslatedPage()
(PyPDF2._page.PageObject method), 93

mergeScaledPage() (PyPDF2._page.PageObject
method), 93

mergeScaledTranslatedPage()
(PyPDF2._page.PageObject method), 93

mergeTransformedPage()
(PyPDF2._page.PageObject method), 94

mergeTranslatedPage() (PyPDF2._page.PageObject
method), 94

metadata (PyPDF2.PdfReader property), 69
modification_date (PyPDF2.DocumentInformation

property), 99
modification_date_raw

(PyPDF2.DocumentInformation property),
99

N
name (PyPDF2.generic.Field property), 110
named_destinations (PyPDF2.PdfReader property),

69
namedDestinations (PyPDF2.PdfReader property), 69
node (PyPDF2.generic.Destination attribute), 105
numPages (PyPDF2.PdfReader property), 69

O
open_destination (PyPDF2.PdfWriter property), 80
original_page (PyPDF2._page.PageObject attribute),

94
outline (PyPDF2.PdfReader property), 69
outline_count (PyPDF2.generic.Destination prop-

erty), 105
outlines (PyPDF2.PdfReader property), 70

P
page (PyPDF2.generic.Destination property), 105
page_layout (PyPDF2.PdfReader property), 70
page_layout (PyPDF2.PdfWriter property), 80
page_mode (PyPDF2.PdfReader property), 70
page_mode (PyPDF2.PdfWriter property), 80
pageLayout (PyPDF2.PdfReader property), 70
pageLayout (PyPDF2.PdfWriter property), 80
pageMode (PyPDF2.PdfReader property), 70
pageMode (PyPDF2.PdfWriter property), 80
PageObject (class in PyPDF2._page), 89
PageRange (class in PyPDF2), 111
pages (PyPDF2.PdfReader property), 70
pages (PyPDF2.PdfWriter property), 81
PaperSize (class in PyPDF2), 117
parent (PyPDF2.generic.Field property), 110

198 Index

PyPDF2

pdf_header (PyPDF2.PdfReader property), 71
pdf_header (PyPDF2.PdfWriter property), 81
pdf_keywords (PyPDF2.xmp.XmpInformation prop-

erty), 102
pdf_pdfversion (PyPDF2.xmp.XmpInformation prop-

erty), 102
pdf_producer (PyPDF2.xmp.XmpInformation prop-

erty), 102
PdfMerger (class in PyPDF2), 85
PdfReader (class in PyPDF2), 67
PdfWriter (class in PyPDF2), 73
producer (PyPDF2.DocumentInformation property),

100
producer_raw (PyPDF2.DocumentInformation prop-

erty), 100

R
rdfRoot (PyPDF2.xmp.XmpInformation property), 102
read() (PyPDF2.PdfReader method), 71
read_next_end_line() (PyPDF2.PdfReader method),

71
read_object_header() (PyPDF2.PdfReader method),

71
readNextEndLine() (PyPDF2.PdfReader method), 71
readObjectHeader() (PyPDF2.PdfReader method), 71
rectangle() (PyPDF2.generic.AnnotationBuilder static

method), 114
RectangleObject (class in PyPDF2.generic), 107
remove_images() (PyPDF2.PdfWriter method), 81
remove_links() (PyPDF2.PdfWriter method), 81
remove_text() (PyPDF2.PdfWriter method), 81
removeImages() (PyPDF2.PdfWriter method), 81
removeLinks() (PyPDF2.PdfWriter method), 81
removeText() (PyPDF2.PdfWriter method), 81
reset_translation() (PyPDF2.PdfWriter method),

81
right (PyPDF2.generic.Destination property), 105
right (PyPDF2.generic.RectangleObject property), 108
rotate() (PyPDF2._page.PageObject method), 94
rotate() (PyPDF2.Transformation method), 98
rotate_clockwise() (PyPDF2._page.PageObject

method), 95
rotateClockwise() (PyPDF2._page.PageObject

method), 94
rotateCounterClockwise()

(PyPDF2._page.PageObject method), 95
rotation (PyPDF2._page.PageObject property), 95

S
scale() (PyPDF2._page.PageObject method), 95
scale() (PyPDF2.generic.RectangleObject method),

108
scale() (PyPDF2.Transformation method), 98
scale_by() (PyPDF2._page.PageObject method), 95

scale_to() (PyPDF2._page.PageObject method), 95
scaleBy() (PyPDF2._page.PageObject method), 95
scaleTo() (PyPDF2._page.PageObject method), 95
set_need_appearances_writer()

(PyPDF2.PdfWriter method), 81
set_page_layout() (PyPDF2.PdfMerger method), 87
set_page_layout() (PyPDF2.PdfWriter method), 81
set_page_mode() (PyPDF2.PdfMerger method), 87
set_page_mode() (PyPDF2.PdfWriter method), 82
setLowerLeft() (PyPDF2.generic.RectangleObject

method), 108
setLowerRight() (PyPDF2.generic.RectangleObject

method), 108
setPageLayout() (PyPDF2.PdfMerger method), 87
setPageLayout() (PyPDF2.PdfWriter method), 81
setPageMode() (PyPDF2.PdfMerger method), 87
setPageMode() (PyPDF2.PdfWriter method), 81
setUpperLeft() (PyPDF2.generic.RectangleObject

method), 108
setUpperRight() (PyPDF2.generic.RectangleObject

method), 108
subject (PyPDF2.DocumentInformation property), 100
subject_raw (PyPDF2.DocumentInformation prop-

erty), 100

T
text() (PyPDF2.generic.AnnotationBuilder static

method), 114
threads (PyPDF2.PdfReader property), 71
threads (PyPDF2.PdfWriter property), 82
title (PyPDF2.DocumentInformation property), 100
title (PyPDF2.generic.Destination property), 106
title_raw (PyPDF2.DocumentInformation property),

100
to_slice() (PyPDF2.PageRange method), 111
top (PyPDF2.generic.Destination property), 106
top (PyPDF2.generic.RectangleObject property), 108
transfer_rotation_to_content()

(PyPDF2._page.PageObject method), 95
Transformation (class in PyPDF2), 97
translate() (PyPDF2.Transformation method), 98
trimBox (PyPDF2._page.PageObject property), 95
trimbox (PyPDF2._page.PageObject property), 95
typ (PyPDF2.generic.Destination property), 106

U
update_page_form_field_values()

(PyPDF2.PdfWriter method), 82
updatePageFormFieldValues() (PyPDF2.PdfWriter

method), 82
upper_left (PyPDF2.generic.RectangleObject prop-

erty), 108
upper_right (PyPDF2.generic.RectangleObject prop-

erty), 108

Index 199

PyPDF2

upperLeft (PyPDF2.generic.RectangleObject property),
108

upperRight (PyPDF2.generic.RectangleObject prop-
erty), 108

user_unit (PyPDF2._page.PageObject property), 95

V
valid() (PyPDF2.PageRange static method), 111
value (PyPDF2.generic.Field property), 110

W
width (PyPDF2.generic.RectangleObject property), 108
write() (PyPDF2.PdfMerger method), 88
write() (PyPDF2.PdfWriter method), 82
write_stream() (PyPDF2.PdfWriter method), 82
write_to_stream() (PyPDF2.generic.Destination

method), 106
write_to_stream() (PyPDF2.xmp.XmpInformation

method), 102
writeToStream() (PyPDF2.xmp.XmpInformation

method), 102

X
xfa (PyPDF2.PdfReader property), 71
xmp_create_date (PyPDF2.xmp.XmpInformation

property), 102
xmp_createDate (PyPDF2.xmp.XmpInformation prop-

erty), 102
xmp_creator_tool (PyPDF2.xmp.XmpInformation

property), 102
xmp_creatorTool (PyPDF2.xmp.XmpInformation

property), 102
xmp_metadata (PyPDF2.PdfReader property), 71
xmp_metadata_date (PyPDF2.xmp.XmpInformation

property), 102
xmp_metadataDate (PyPDF2.xmp.XmpInformation

property), 102
xmp_modify_date (PyPDF2.xmp.XmpInformation

property), 103
xmp_modifyDate (PyPDF2.xmp.XmpInformation prop-

erty), 102
XmpInformation (class in PyPDF2.xmp), 101
xmpMetadata (PyPDF2.PdfReader property), 71
xmpmm_document_id (PyPDF2.xmp.XmpInformation

property), 103
xmpmm_documentId (PyPDF2.xmp.XmpInformation

property), 103
xmpmm_instance_id (PyPDF2.xmp.XmpInformation

property), 103
xmpmm_instanceId (PyPDF2.xmp.XmpInformation

property), 103
xyz() (PyPDF2.generic.Fit class method), 116

Z
zoom (PyPDF2.generic.Destination property), 106

200 Index

	Installation
	pip
	Optional dependencies

	Python Version Support
	Anaconda
	Development Version

	Migration Guide: 1.x to 2.x
	Imports and Modules
	Naming Adjustments
	Classes
	Function, Method, and Property Names
	Parameter Names
	Deprecations

	Robustness and strict=False
	Exceptions, Warnings, and Log messages
	Exceptions
	Warnings
	Log messages

	Metadata
	Reading metadata
	Writing metadata

	Extract Text from a PDF
	Using a visitor
	Example 1: Ignore header and footer
	Example 2: Extract rectangles and texts into a SVG-file

	Why Text Extraction is hard
	OCR vs Text Extraction
	Digitally-born vs Scanned PDF files
	Can we just always use OCR?

	Attempts to prevent text extraction

	Extract Images
	Encryption and Decryption of PDFs
	Encrypt
	Decrypt

	Merging PDF files
	Basic Example
	Showing more merging options
	append
	add_page / insert_page
	reset_translation
	Advanced cloning

	Cropping and Transforming PDFs
	Page rotation
	Plain Merge
	Merge with Rotation
	Scaling
	Scaling a Page (the Canvas)
	Scaling the content

	Adding a Stamp/Watermark to a PDF
	Stamp (Overlay)
	Watermark (Underlay)

	Reading PDF Annotations
	Text
	Highlights
	Attachments

	Adding PDF Annotations
	Attachments
	Free Text
	Text
	Line
	Rectangle
	Link

	Interactions with PDF Forms
	Reading form fields
	Filling out forms

	Streaming Data with PyPDF2
	Writing a PDF directly to AWS S3
	Reading PDFs directly from cloud services

	Reduce PDF Size
	Removing duplication
	Remove images
	Lossless Compression

	PDF Version Support
	PDF Feature Support by PyPDF2

	The PdfReader Class
	The PdfWriter Class
	The PdfMerger Class
	The PageObject Class
	The Transformation Class
	The DocumentInformation Class
	The XmpInformation Class
	The Destination Class
	The RectangleObject Class
	The Field Class
	The PageRange Class
	The AnnotationBuilder Class
	The Fit Class
	The PaperSize Class
	Developer Intro
	Installing Requirements
	Running Tests
	The sample-files git submodule
	Tools: git and pre-commit
	Commit Messages
	Benchmarks

	The PDF Format
	Overall Structure
	The xref table
	The body
	The trailer
	Reading PDF files

	CMaps
	codespacerange

	The Deprecation Process
	Semantic Versioning
	How PyPDF2 deprecates features

	Testing
	De-selecting groups of tests
	Creating a Coverage Report

	CHANGELOG
	Version 3.0.0, 2022-12-22
	BREAKING CHANGES ⚠️
	New Features (ENH)
	Documentation (DOC)
	Maintenance (MAINT)

	Version 2.12.1, 2022-12-10
	Documentation (DOC)
	Maintenance (MAINT)

	Version 2.12.0, 2022-12-10
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Maintenance (MAINT)
	Testing (TST)

	Version 2.11.2, 2022-11-20
	New Features (ENH)
	Bug Fixes (BUG)
	Developer Experience (DEV)

	Version 2.11.1, 2022-10-09
	Bug Fixes (BUG)
	Robustness (ROB)

	Version 2.11.0, 2022-09-25
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)

	Version 2.10.9, 2022-09-18
	New Features (ENH)
	Performance Improvements (PI)
	Bug Fixes (BUG)
	Robustness (ROB)

	Version 2.10.8, 2022-09-14
	New Features (ENH)
	Robustness (ROB)

	Version 2.10.7, 2022-09-11
	Bug Fixes (BUG)
	Testing (TST)

	Version 2.10.6, 2022-09-09
	Robustness (ROB)

	Version 2.10.5, 2022-09-04
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Maintenance (MAINT)

	Version 2.10.4, 2022-08-28
	Robustness (ROB)
	Maintenance (MAINT)
	Testing (TST)
	Packaging (PKG)

	Version 2.10.3, 2022-08-21
	Robustness (ROB)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)

	Version 2.10.2, 2022-08-15
	Version 2.10.1, 2022-08-15
	Bug Fixes (BUG)
	Documentation (DOC)
	Maintenance (MAINT)
	Testing (TST)

	Version 2.10.0, 2022-08-07
	New Features (ENH)
	Bug Fixes (BUG)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)

	Version 2.9.0, 2022-07-31
	New Features (ENH)
	Bug Fixes (BUG)
	Documentation (DOC)
	Maintenance (MAINT)

	Version 2.8.1, 2022-07-25
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Maintenance (MAINT)
	Testing (TST)

	Version 2.8.0, 2022-07-24
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)

	Version 2.7.0, 2022-07-21
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Code Style (STY)

	Version 2.6.0, 2022-07-17
	New Features (ENH)
	Bug Fixes (BUG)
	Documentation (DOC)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 2.5.0, 2022-07-10
	New Features (ENH)
	Performance Improvements (PI)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 2.4.2, 2022-07-05
	New Features (ENH)
	Bug Fixes (BUG)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 2.4.1, 2022-06-30
	New Features (ENH)
	Performance Improvements (PI)
	Documentation (DOC)
	Maintenance (MAINT)
	Code Style (STY)

	Version 2.4.0, 2022-06-26
	New Features (ENH):
	Performance Improvements (PI):
	Bug Fixes (BUG):
	Robustness (ROB):
	Documentation (DOC):
	Developer Experience (DEV):

	Version 2.3.1, 2022-06-19
	Version 2.3.0, 2022-06-19
	Deprecations (DEP)
	New Features (ENH)
	Robustness (ROB)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 2.2.1, 2022-06-17
	Performance Improvements (PI)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Testing (TST)
	Code Style (STY)

	Version 2.2.0, 2022-06-13
	Version 2.1.1, 2022-06-12
	New Features (ENH)
	Performance Improvements (PI)
	Bug Fixes (BUG)
	Documentation (DOC)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 2.1.0, 2022-06-06
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Testing (TST)
	Code Style (STY)

	Version 2.0.0, 2022-06-01
	Breaking Changes (DEP)
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)

	PyPDF2 1.X

	Changelog of PyPDF2 1.X
	Version 1.28.4, 2022-05-29
	Version 1.28.3, 2022-05-28
	Deprecations (DEP)
	Bug Fixes (BUG)

	Version 1.28.2, 2022-05-23
	Bug Fixes (BUG)

	Version 1.28.1, 2022-05-22
	Bug Fixes (BUG)
	Maintenance (MAINT)

	Version 1.28.0, 2022-05-22
	Deprecations (DEP)
	Details

	Version 1.27.12, 2022-05-02
	Bug Fixes (BUG)
	Documentation (DOC)

	Version 1.27.11, 2022-05-02
	Bug Fixes (BUG)

	Version 1.27.10, 2022-05-01
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 1.27.9, 2022-04-24
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)

	Version 1.27.8, 2022-04-21
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)

	Version 1.27.7, 2022-04-19
	Bug Fixes (BUG)
	Code Style (STY)

	Version 1.27.6, 2022-04-18
	Deprecations (DEP)
	New Features (ENH)
	Bug Fixes (BUG)
	Robustness (ROB)
	Documentation (DOC)
	Developer Experience (DEV)
	Maintenance (MAINT)
	Testing (TST)
	Code Style (STY)

	Version 1.27.5, 2022-04-15
	Security (SEC)
	Bug fixes (BUG)
	Robustness improvements (ROBUST)
	Documentation (DOC)
	Tests and Test setup (TST)
	Developer Experience Improvements (DEV)
	Miscellaneous

	Version 1.27.4, 2022-04-12
	Bug fixes (BUG)
	Packaging (PKG)
	Testing (TST)
	Miscellaneous

	Version 1.27.3, 2022-04-10
	Version 1.27.2, 2022-04-09
	Version 1.27.1, 2022-04-08
	Version 1.27.0, 2022-04-07
	Bug fixes (BUG)
	Documentation (DOC)
	Tests and Test setup (TST)
	Developer Experience Improvements (DEV)
	Miscellaneous

	Version 1.26.0, 2016-05-18
	Version 1.25.1, 2015-07-20
	Version 1.25, 2015-07-07
	Version 1.24, 2014-12-31
	Version 1.23, 2014-08-11
	Version 1.22, 2014-05-29
	Version 1.21, 2014-04-21
	Version 1.20, 2014-01-27
	Version 1.19, 2013-10-08
	Version 1.18, 2013-08-19
	Version 1.17, 2013-07-25
	Versions -1.16, -2013-06-30
	Version 1.13, 2010-12-04
	Version 1.12, 2008-09-02
	Version 1.11, 2008-05-09
	Version 1.10, 2007-10-04
	Version 1.9, 2006-12-15
	Version 1.8, 2006-12-14
	Version 1.7, 2006-12-10
	Version 1.6, 2006-06-06
	Version 1.5, 2006-01-28
	Version 1.4, 2006-01-27
	Version 1.3, 2006-01-23
	Version 1.2, 2006-01-23
	Version 1.1, 2006-01-18
	Version 1.0, 2006-01-17

	Project Governance
	Terminology
	Governance, Leadership, and Steering PyPDF2 forward
	Project Language
	Expectations
	Issues and Discussions
	Releases

	People

	History of PyPDF2
	The Origins: pyPdf (2005-2010)
	PyPDF2 is born (2011-2016)
	PyPDF3 and PyPDF4 (2018 - 2022)
	PyPDF2: Reborn (2022-Today)

	Contributors
	Contributors to the pyPdf / PyPDF2 project
	Adding a new contributor

	PyPDF2 vs X
	PyMuPDF and PikePDF
	pyPDF
	PyPDF3 and PyPDF4
	pdfrw and pdfminer
	Document Generation

	Frequently-Asked Questions
	How is PyPDF2 related to pyPdf?
	Which Python versions are supported?
	Who uses PyPDF2?
	How do I cite PyPDF2?

	Indices and tables
	Index

