The Transformation Class

class PyPDF2.Transformation(ctm: Tuple[float, float, float, float, float, float] = (1, 0, 0, 1, 0, 0))[source]

Bases: object

Specify a 2D transformation.

The transformation between two coordinate systems is represented by a 3-by-3 transformation matrix written as follows:

a b 0
c d 0
e f 1

Because a transformation matrix has only six elements that can be changed, it is usually specified in PDF as the six-element array [ a b c d e f ].

Coordinate transformations are expressed as matrix multiplications:

                            a b 0
[ x′ y′ 1 ] = [ x y 1 ] ×   c d 0
                            e f 1
>>> from PyPDF2 import Transformation
>>> op = Transformation().scale(sx=2, sy=3).translate(tx=10, ty=20)
>>> page.add_transformation(op)
apply_on(pt: Union[Tuple[decimal.Decimal, decimal.Decimal], Tuple[float, float], List[float]]) Union[Tuple[float, float], List[float]][source]
static compress(matrix: Tuple[Tuple[float, float, float], Tuple[float, float, float], Tuple[float, float, float]]) Tuple[float, float, float, float, float, float][source]
property matrix: Tuple[Tuple[float, float, float], Tuple[float, float, float], Tuple[float, float, float]]
rotate(rotation: float) PyPDF2._page.Transformation[source]
scale(sx: Optional[float] = None, sy: Optional[float] = None) PyPDF2._page.Transformation[source]

Scale the contents of a page towards the origin of the coordinate system.

Typically, that is the lower-left corner of the page. That can be changed by translating the contents / the page boxes.

translate(tx: float = 0, ty: float = 0) PyPDF2._page.Transformation[source]